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Abstract. A generic description of spectrographs based
on first optical principles is developed. It incorporates off-
plane grating equations and rotations in three dimensions
in order to adequately account for line tilt and order curva-
ture. This formalism is validated by confronting the mod-
els for two actual spectrographs (UVES and CASPEC)
with ray tracing results and arc lamp exposures. The ver-
satility of these models for the control of instrument con-
figurations, for the generation of calibration databases,
and for the preparation of observations is shown. As an im-
portant application, we derive from this formulation var-
ious forms of the echelle relation which can be used to
implement automatic wavelength calibration procedures.
Finally, we discuss possible applications of such analytical
models of astronomical instruments for calibration, data
analysis and observatory operations.

Key words: instrumentation: spectrographs — meth-
ods: data analysis — techniques: image processing;
spectroscopic

1. Introduction

The rapid evolution of detector and instrument technology
has provided astronomers with the capabilities to acquire
large amounts of high signal-to-noise, multi-dimensional
observational data. In order to exploit optimally these
data, the entire chain of the observation process from in-
strument configuration control through calibration, analy-
sis and archival has to be tailored towards very high stan-
dards. In contemporary data calibration and analysis very
little has been done so far to relate the optical layout and
its engineering parameters with the performance on scien-
tific targets and calibration sources. Even less use has been
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made of the physical principles underlying the character-
istics of a given instrument in predicting the performance
to a large degree of accuracy (cf. Rosa 1995).

A number of developments make it more practi-
cal today to efficiently use optical models in the post-
observational process (see Ballester 1996). First of all
instrument configuration control, which is self evident
for space missions, is now being enforced more strictly
at ground based instruments. Second the development
of service observing modes at major facilities like the
Very Large Telescope (VLT) of the European Southern
Observatory (ESO) necessitates the development of data
quality control procedures. And third, the need to process
large amounts of data in a homogeneous manner calls for
robust automatic calibration techniques (Ballester 1994).
First principle based analysis techniques have been ap-
plied for example in the algorithm to correct for the grat-
ing scatter in the HST Faint Object Spectrograph (FOS)
(Rosa 1994), which was implemented in major data anal-
ysis environments (Bushouse et al. 1995). A model based
solution to first order spectrograph dispersion relations
has been used by Dahlem & Rosa (1997) to assess the un-
certainties inherent in low order polynomial fits for wave-
length calibrations for the FOS. Another interesting case is
the HST PSF model (e.g. Hasan & Burrows 1994), which
shows the relation between using a model of the optics
to retrieve parameters for the refurbishing mission and its
use to generate PSFs for deconvolution.

One of the most demanding cases of data calibration
and analysis are 2D echelle spectra. Traditionally, they
require complex data reduction procedures to cope si-
multaneously with both, the geometrical distortion of the
raw data introduced by order curvature and line tilt, and
with the spread of the signal across the tilted lines and
between successive orders respectively (cf. Hensberge &
Verschueren 1990). Un-supervised wavelength calibration
for these instruments can only be achieved by reducing
to a minimum the information needed to start the cal-
ibration process. This requires the most efficient use of
the a priori knowledge from the optical properties of the



564 P. Ballester and M.R. Rosa: Modeling echelle spectrographs

instrument under consideration. For instance the echelle
relation is commonly employed to start the calibration
process, and can in the simplest cases be determined with
only 2 interactive line identifications. However, the valid-
ity of the simple echelle relation is limited to those cases
where the detector rotation and optical aberrations are
negligible, as pointed out for instance by Hall et al. (1994).
Another approach is to use encoder values of the grating
angles fed into analytic formulae for the dispersion re-
lation, presented by Goodrich & Veilleux (1988) for an
in-plane spectrograph. However, a more general solution
capable of handling off-plane situations has not been de-
veloped so far.

We study in this article the principles governing the
determination of an accurate form of the echelle relation
for off-plane echelle spectrographs, and analyze the appli-
cations of such models for the calibration of echelle spec-
trographs. In a first step we derive the characteristic equa-
tions of echelle spectrographs from first principles (Sect. 2
and Appendix A). This formalism is then confronted with
the results of ray tracing analysis for the demanding case
of an off-plane echelle spectrograph (Sect. 3). In Sect. 4
the application of models to the task of instrument con-
figuration control is discussed and verified on actual data
from an instrument that has been in service for a decade.
In Sect. 5 and Appendix B methods derived from such op-
tical models are introduced that allow one to reduce to a
minimum the information needed to start the wavelength
calibration process. Section 6 will be used to discuss possi-
ble applications of such analytical models for the calibra-
tion of astronomical instruments, advanced data analysis,
and observation planning.

2. Optical principles for spectrographs

2.1. Optical elements and geometry

The elements of a model for echelle spectrographs are mir-
rors, lenses, gratings, prisms, grisms. Here we will focus
solely on the geometric aspects, i.e. the 2D–dispersion re-
lation. Luminosity aspects brought about by the inter-
ference terms, e.g. the echelle blaze function, line spread
functions, as well as geometrical vignetting or reflectiv-
ity and transmissivity of materials will be the subject of
subsequent communications. The notations of Schroeder
(1987) are followed for the definitions of angles and orien-
tations (right-hand Cartesian frame).

A ray incident on an optical surface co-planar with the
xy-plane has direction (α, γ) (see Fig. 1) and projects onto
the axes as

x = sinα cos γ (1)

y = sin γ (2)

z = cosα cos γ. (3)

Conversely the angles (α, γ) are given by

α = arctan
x

z
(4)

γ = arctan

(
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Fig. 1. Axes and angles notations

Since these angles are for incidences, their values are
comprised in the interval −π2 to π

2 . The orientation of the
optical surface is described by the rotation angle τ about
the z axis. The angles µ and ν denote rotations relative
to x and y respectively. Referential changes are performed
by applying the rotations in the following order:

R = R−τ/zR−ν/xR−µ/y (6)

and the transpose matrix provides the opposite change of
the referential:

RT = Rµ/yRν/xRτ/z (7)

where each rotation matrix is of the form:

Rτ/z =

 cos τ sin τ 0
− sin τ cos τ 0

0 0 1

 · (8)

2.2. Diffraction by the echelle grating

The direction of incident rays on an echelle grating is de-
fined by the two angles (αE, γE) (Schroeder 1987). The
general grating equation can be written as

mλ

σ
= n′ cos γ′E sinβE − n cosγE sinαE (9)

and

n sin γE = n′ sin γ′E (10)

where m is the order number, λ the wavelength, σ the
groove separation in unit of length, n and n′ the refractive
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indices before and after the grating, αE and γE the inci-
dence angles, and βE and γ′E the direction of the diffracted
rays.

For a reflection grating n′ = −n and therefore γ′E =
−γE, hence

mλ

σ
= −n cosγE(sinβE + sinαE). (11)

One can note that using the projection equations it is
possible to write the two grating Eqs. (9) and (10) as:

n′x′ =
mλ

σ
+ nx (12)

n′y′ = ny. (13)

This formulation allows to introduce the grating in the
model in the form of a matrix. However, since no simple
optical equation allows to derive z this term will need to
be derived from the normalization relation:

z =
√

1− x2 − y2. (14)

2.3. Echelle relation

The echelle relation of a spectrograph derives from the
echelle grating equation. For a constant αE and all rays
corresponding to a constant product mλ are diffracted in
the direction βE. In a simplistic model one could expect
that the lines of constant valuemλ project as straight lines
in the detector planes and for a perfect alignment of the
detector as, say, columns on the detector. This assump-
tion is however limited by aberrations and rotation of the
detector.

2.4. Diffraction by the cross-disperser

The cross-disperser is either a grating, a prism or a grism
of low spectral resolution. It displaces successive orders of
the echelle grating vertically with respect to each other.
It is normally rotated by an angle τCD = π/2 so that the
dispersion equations of the cross-disperser needs to be ap-
plied after rotation to the referential of the cross-disperser.
σCD denotes the groove separation for this grating.

2.5. Planes, mirrors and grisms

The refraction at a plane is given by Snell-Descartes law

n sin θ = n′ sin θ′. (15)

The projection of an incident beam is given by Eq. (1)
and the angle θ with the z axis is:

cos θ = cos γ cosα. (16)

One can also express this relation using the direction
cosine vector:

x′ = nx/n′ (17)

y′ = ny/n′ (18)

z′ =
√

1− x′2 − y′2. (19)

For n′ = −n these are the equations for a mirror.
This paper does not discuss grism based spectrographs
although the above equations have been used to model
such spectrographs. We indicate it here for the sake of
completeness of the analytical framework. Grisms are rep-
resented by the association of a plane and a grating.

2.6. Lenses and curved mirrors with positive power

In the referential of the optical element the projections
(x, y) on the focal plane at focal distance F are given by

xd = F tanα (20)

yd = F tan γ. (21)

Equations (4) and (5) allow to derive directly the val-
ues of tanα and tanγ from the coordinates of the unit
vector (x, y, z).

2.7. Projection onto detectors

Translation and rotation of the detector array are applied
to the vector point (x, y) by

xr = xd0 + xd cos(τDET) + yd sin(τDET) (22)

yr = yd0 − xd sin(τDET) + yd cos(τDET). (23)

This rotation can be applied as a rotation matrix be-
fore entering the camera lens. This step is performed after
the lens projection in order to determine the analytical
form of the dispersion relation in the absence of detector
rotation.

2.8. Aberrations and chromatism

In a complete optical train the above set of equations
strictly apply only for on-axis rays and do not take into ac-
count field distortions, camera aberrations and wavelength
dependencies of e.g. the focal lengths. In instruments like
UVES (discussed below) these effects can account for dis-
crepancies of several pixels at the detector.

Distortions are specific to the optical elements and lay-
out, and are usually predictable and stable in time. As will
be shown in Sect. 3 a model for a given instrument will
typically match 99.5% using the physical description as de-
veloped above. For most applications it will not pay off to
develop further the description by introducing off-axis op-
tical equations. Instead the residuals can be corrected for
by inserting at the proper location low order polynomial
functions whose coefficients can for example be produced
with the help of a ray tracing program.

In the following we will closely analyze the application
of both, the exact (on axis) equations and a simplified an-
alytical form respectively. Two notions of accuracy will be
used. On the one hand the absolute accuracy of the model
is limited by the optical effects not taken into account like
e.g. aberrations and distortions. On the other hand the
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accuracy of the simplified analytical model will be limited
by the numerical approximations performed to keep the
analytical form simple (e.g. Taylor series expansions).

3. Analytical model versus ray tracing

In this section we use the general framework derived above
to model the UVES spectrograph and compare the results
with those from a Code V1 ray tracing analysis.

3.1. UVES as a case study

The UV Visual Echelle Spectrograph UVES (D’Odorico
1997), to see first light in 1999 on the VLT, is a two-arm
cross-dispersed echelle spectrograph covering the wave-
length range 300 − 500 nm (blue) and 420 − 1100 nm
(red), with the possibility to use dichroics. The nominal
resolution is 40 000 for a 1′′ slit, the maximum resolution
that can be attained with a narrow slit or image slicer
is 120 000 in the red and 90 000 in the blue with 2-pixel
sampling. The dioptric cameras offer fields with a diam-
eter of 43.5 mm (blue) and 87 mm (red), to be recorded
by baseline CCD detectors of 2048 × 2048 pixels of size
15 µm in the blue arm and 2 or 4 such devices in the red
arm. The instrument components are placed inside a pas-
sive enclosure which provides thermal isolation from the
environment. The control and CCD electronics are located
in temperature controlled cabinets outside the enclosure.
All functions (filters, ADC etc.) are permanently on-board
and remotely selectable without manual intervention. A
continuous flow of liquid N2 coolant for the CCD’s is sup-
plied by an external vessel with an autonomy of at least
14 days. These measures are expected to lead to high sta-
bility and repeatability of calibrations both over short and
extended periods of time.

UVES was selected as a case study because the off-
plane design is introducing a pronounced slit curvature,
and therefore offers a demanding case for any modeling
approach. Elaborate ray tracing results are available from
the optical design phase. Moreover, since the design of this
instrument is tailored towards ensuring a high degree of
stability (see above), it makes it a perfect candidate for
model based calibration and data analysis approaches.

3.2. Modeling UVES

For our study we use the optical design parameters of the
red arm configuration of UVES with the 316 grooves/mm
cross-disperser. This configuration is described by

– an echelle reflection grating (31.6 grooves/mm). The
beam enters at αE = −75 degrees and γE = −0.8 de-
grees. The output axis is oriented at βE = −75 degrees,
γ′E = 0.8 degrees.

1 Code V is a trademark of Optical Research Associates,
Pasadena, California.

– an a-focal system composed of two collimators of focal
length F1 = F2 = 2.0 meters. The system introduces
field curvature in the direction of the dispersion of the
echelle grating. In our model, field curvature is approx-
imated by a polynomial.

– a reflecting cross-disperser (316 grooves/mm). The
difference between incident and diffracted directions
is βCD − αCD = 45.0 degrees. At the selected cen-
tral wavelength (λ = 804.4 nm) the beam enters at
αCD = −30.42 degrees and is diffracted at βCD = 14.58
degrees.

– a camera introducing lateral chromatism and field dis-
tortion. In the extended model these are represented
by bivariate polynomials, values at grid points being
obtained from the Code V analysis.

A detailed presentation of the steps and equations in-
volved in the UVES model is given in Appendix A.

3.2.1. Comparison with ray tracing

Without the polynomial correction for aberrations the an-
alytical model reproduces the positional information of the
Code V ray tracing analysis with an rms error of 8 pixels
of the detector, i.e. an error of less than 0.5%. Locally the
genuine analytical model is much more accurate as regards
curvatures, tilts and distances (see Sect. 3.2.2).

Including a polynomial correction for the aberrations
and field distortions, the comparison with ray tracing
shows a precision of the analytical model of better than 1
pixel anywhere in the field. Regarding line tilt, the results
are in full agreement with Code V.

Since the UVES mode considered has all vital elements
of a genuine echelle spectrograph and in addition the pro-
nounced line curvature from off-plane configurations we
conclude that the formalism developed in the previous
Section is indeed capable of modeling the geometric as-
pects with the accuracy necessary for applications in the
domain of calibration and data analysis.

3.2.2. Simulated spectral formats

One important aspect of our simulation is to show in detail
the curvature of the slit images. We recall that this is made
possible only by the rigorous off-plane formulation. The
simulation of orders 63, 76 and 98 is shown in Fig. 2.

It is interesting to note that one of the first practical
applications of this analytical model was to determine the
optimal slit rotation angle minimizing the slit curvature.
Further simulation showed that the curvature can be min-
imized by rotating the slit by an angle of 5.95 degrees. In
this case, for a pixel size of 15 µm, the slit image extends
across 200 pixels while the curvature reaches a maximum
value of only 1 pixel at the extremes.
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Fig. 2. Slit curvature in the red arm. The curvature is shown
on a scale exaggerated by a factor 10 along the x-axis and
2 along the y-axis. Positions on the detector are in mm for
lines taken at the limits of the free spectral range in 3 different
orders (order 98 is at the top of the graph, 76 in the middle,
and 63 at the bottom)

4. Confronting the model with observational data

4.1. The CASPEC model

In the following the first principle description is tested
against actual arc lamp exposures from an existing spec-
trograph, here CASPEC in service at ESO, La Silla since
1984. With the exception of the camera, this spectrograph
employs only reflective surfaces, and the distortions of this
camera are very small. As an initial guess for the parame-
ters of the model one uses engineering parameters, as they
were measured at the time of instrument commissioning
in January 1984, namely:

– an echelle reflection grating (31.6 grooves/mm). The
beam enters at αE = −71.5 degrees and γE = 0 de-
grees, and βE+αE = −13.0±0.1 degrees, such that the
output axis is oriented at βE = 58.3 degrees, γ′E = 0
degrees.

– a reflective cross-disperser with 300 grooves/mm. The
angle of incidence depends on the central wave-
length, and the angle separation between incident and
diffracted rays is βCD − αCD = 45.3± 0.2 degrees.

– a camera with focal length FCAM = 0.288± 0.003 m.
The focal length depends slightly on wavelength. Field
distortions are below 1 pixel wrt a grid.

4.1.1. Adjusting the CASPEC model

Arc lamp calibration exposures from 3 different epochs
were compared with the model, each corresponding to dif-
ferent configurations (detectors, central wavelength and
cross-dispersers). Because the limiting factor for the ac-
curacy of our model will be the camera distortions, and

since no Code V simulations are available to compare with,
we assume a threshold accuracy of 1.5 pixel rms for the
model.

For each well detected calibration line the x, y-
positions are predicted by the model using its catalog
wavelength and the order number. The rms residuals be-
tween the measured and predicted positions serve to es-
timate the goodness of the fit. One starts with the above
initial values for the optical configuration. An initial guess
for τDET can be obtained by geometrical measurement on
the frame. An initial guess for αCD can be derived from
the central wavelength by solving the dispersion equation
of the cross-disperser. The following parameters are been
kept at their nominal values: βCD − αCD = 45.3 degrees;
βE + αE = −13.0 degrees; the grating constants; and the
detector pixel size.

The model is iteratively refined by modifying the four
parameters which are found to have the largest influence:

– αCD, the angle of incidence on the cross disperser,
– αE the angle of incidence on the echelle grating,
– FCAM the focal length of the camera, and
– τDET the rotation angle of the detector.

Near the optimal solution for each configuration, re-
spectively epoch, the model matches the observational
frames to within 0.4 ± 0.3 pixel rms (Fig. 3). The neigh-
borhood within which the condition of 1.5 pixel rms is
fulfilled yields an uncertainty estimate for these four pa-
rameters. Table 1 presents the results. It is important to
note, that the values estimated by this method on the ex-
posures from different epochs and configurations are sta-
ble and consistent with the measured values. The value of
FCAM is not a measurement of the focal length of the cam-
era itself, but represents the distance between the camera
lens and the detector plane instead. We note that the in-
cidence angle on the echelle grating remained stable from
1984 to 1991. The nominal value is different for epoch
1994, and although this change is within the quoted error
margin, it can actually be traced to a reassembly of the in-
strument in 1992. This is an indication, that the predictive
power of our model might be better than the conservative
error estimates based on an arbitrary value of 1.5 pixel.

Certainly, this technique for controlling an instrument
configuration by comparison with a model needs further
investigation. However, the example shows that an accu-
rate determination of the instrument configuration can be
obtained, provided that the model includes all the impor-
tant optical effects. Thus the approach through analytical
models is useful to monitor the instrument stability and
to predict calibration solutions, if configuration control is
imposed.

5. Wavelength calibration of echelle spectra

In the following we take a closer look onto the practical
use in wavelength calibration of the formalism developed
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Fig. 3. Residuals between the measured positions of about 560
Th-Ar lines in the CASPEC observation C and the prediction
from the model. The square indicates one pixel on the detector.
Without a detailed analysis of the line centering methods it is
not possible to relate the asymmetry of the distribution to
systematics in either the model or the measurements. In any
case the asymmetry is small in comparison to detector pixel
size, i.e. 1/2 resolution element

Table 1. Optical configuration of CASPEC as determined
from a set of observations using the analytical model

Observation A B C
Date Jul. 1984 Jan. 1991 Apr. 1994
Central Wav. 610 nm 490 nm 600 nm
Detector CCD#3 CCD#16 CCD#32
Cross Disperser 300. gr./mm 300. gr./mm 158. gr./mm

αCD (deg.) 28.2± 2 27.0± 2 26.0± 2.5
αE (deg.) −71.2± 0.7 −71.2± 0.6 −71.6± 0.6
FCAM (m) 0.286± 0.003 0.283± 0.003 0.292± 0.003
τDET (deg.) −0.1± 0.6 1.85± 0.35 1.50± 0.4

so far and validated against two specific spectrographs.
It is important to recall that we have started from text
book physical principles, derived analytical equations and
their simplifications for practical purposes with the pri-
mary goal to obtain robust procedures for improved cali-
bration and data analysis.

5.1. Generating initial solutions

The model represents adequately all effects for off-plane
spectrographs including line curvature with an accuracy

close to one pixel. Because it is mostly based on linear al-
gebra (see Appendix A), it is straight forward to produce
high performance code. Such code can be used to generate
accurate initial solutions of the dispersion relation using
the grating positions as provided by encoders. This allows
to implement fully automatic wavelength calibration pro-
cedures.

In cases where no grating positions are available, or
where the zero points of such readings are unstable, one
has to resort to interactive line identifications. Clearly, for
these cases one will want to derive simple procedures and
code. An important question therefore is how to make use
of the special properties of the echelle relation in order to
minimize the amount of such line identifications required
to bootstrap a semi-automatic wavelength calibration pro-
cedure. In order to remain of any practical use, the sim-
plified formalism still has to provide a local accuracy of a
few resolution elements.

5.2. Simplified forms of the echelle relation

Using the set of equations presented in Appendix A, here
with the approximation tan(u) ≈ u, and defining the in-
termediate quantities χ1 and χ2 as:

χ1 = mλσE − sin(αE) (24)

χ2 = cos(µ1)χ1 + sin(µ1)
√

1− χ2
1 (25)

one derives for an in-plane spectrograph (s = 0, γE =
γ′E = 0):

xd = χ2FCAM + xd0. (26)

Because of the approximation tan(u) ≈ u this form for
xd = f(λ) does not depend on the characteristics of the
cross-disperser. In the absence of detector rotation (see
also Hall et al. 1994) the product mλ is constant for a
given xd, i.e. a fixed column on the detector.

One can solve Eq. (26) for λ as

mλ = a0 + a1xd ±
√
a2 + a3xd + a4x2

d (27)

with the coefficients ai, i = 0, .., 4 involving the engineer-
ing parameters. If in addition the order curvature is negli-
gible one can simplify further to a first order polynomial.

Usually in real instruments the alignment of the detec-
tor with the dispersion direction is not perfect. A misalign-
ment by only 1 degree on a 1 K pixel detector amounts to
an error of about 10 pixels at the edges. Hence, it is nec-
essary to correct either the positions or the linear echelle
relation for detector rotation.

mλ = a0 + a1(xr + yrtan(α)). (28)

In this case only three parameters will be needed to de-
scribe the initial relation. The value of this rotation angle
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may be determined geometrically, for example by compar-
ing the difference in y position for a given wavelength in
two adjacent orders.

This naive approximation would state that y-positions
depend only on the characteristics of the cross-disperser.
However, it can readily be seen that even under the as-
sumptions from the start of this section, this is an over-
simplification, because the expression of the position yd

as it can be derived from the formalism in Appendix A
involves both, mσEλ and σCDλ respectively. It is obvious
that the y positions have to depend also on the dispersion
relation of the echelle grating as well, because the combi-
nation of the two gratings produces the well known order
curvature in echellograms. Therefore one cannot expect a
sufficiently accurate determination of the rotation angle
by simply comparing y-positions for fixed wavelengths. If
the order curvature is significant one will need more iden-
tifications, and a least-square minimization of equation
28 as presented in Appendix B. Still this model based
bootstrapping of the wavelength calibration requires less
initial idenfications than 2d-polynomial methods as pre-
sented by e.g. Goodrich & Veilleux (1988) or Verschueren
et al. (1997).

6. Discussion

In the foregoing analysis we have shown that algorithmi-
cally rather simple, yet very precise models can be con-
structed for spectrographs, even if significant off-plane de-
signs are involved. The approach from first principles and
its inherent predictive power allows one to quantitatively
assess the degree of simplification permitted for various
applications, which are at the focus of this discussion.

The most direct application of instrument models is
certainly in the area of data calibration. Historically, the
data calibration process has been tackled as “a cleaning
from instrumental signatures”. Usually one employs em-
pirical approximations obtained from the observation of
“standards” (cf. Rosa 1995). A typical example is the em-
pirical determination of a dispersion relation by fitting a
low order polynomial to a list of positions of calibration
lines. Dahlem & Rosa (1997) have shown for low disper-
sion, first order grating spectra from the FOS on-board
HST that the dispersion relation analysis in the presence
of noise, small line lists, centering errors and line blending
is greatly improved by the use of optical relations. This is
entirely due to the predictive power for the local curvature
of a first principle derived relation, thereby avoiding the
overshoot of polynomials at the boundaries of the data
range.

As was shown in Sect. 5, the first principle based an-
alytical model of echelle spectrographs can ease very sig-
nificantly the tedious wavelength calibration task of 2D-
echellograms. We stress the fact that it is important to
perform the proper simplification of the problem in order
to preserve the accuracy of the approach while limiting the

complexity of the formulae to be implemented. In particu-
lar, it is compulsory to use 3D geometrical transformations
in order to reproduce on the sub-pixel scale the observed
dispersion relations of off-plane echelle designs and in the
presence of detector rotation.

One can on this basis set up template based calibra-
tion procedures by providing sets of parameters with as-
sociated uncertainty ranges in order to fit the expression
to actual calibration exposures pertaining to a given sci-
entific observation. We emphasize the fact that these pa-
rameters are the engineering values such as focal length,
grating constants, construction and grating angles and so
forth. For the case of CASPEC one has shown in Sect. 4
how these engineering parameters can be determined and
verified by adjusting the proper instrument model to ob-
servational data.

It is straight forward to conceive the next stage, i.e.
predictive calibration (cf. Rosa 1995), by using contem-
porary values for the engineering parameters in order to
provide best guess dispersion relations, which may be ad-
justed by small linear offsets using inexpensive control ob-
servations. Seemingly similar procedures are indeed imple-
mented in e.g. the HST pipeline calibration. However, it
is important to emphasize that in the latter case empiri-
cal calibration relations are used, which have only limited
predictive power as regards the effect of varying individual
engineering parameters. For example, an ambient temper-
ature effect on the dispersion relation does not reflect itself
directly in a single parameter of the 3rd order polynomial
fit to this relation.

One of the main objections to the “first principle”
approach has been of a practical kind, namely the lack
of control of the setup of ground-based astronomical
instruments. However, more rigid configuration control
is now being implemented in an increasing number of
observatories. It is clear, that data analysis methods
based on physical models of such controlled configurations
will enjoy a large gain over purely empirical methods.
Furthermore, a physical model based approach removes
the non–uniqueness of the relation between engineering
parameters and coefficients in empirical relations. This of-
fers operational advantages such as methods for automatic
configuration control and instrument check-out.

The observational process as a whole can therefore
benefit from a first principle instrument model approach
during all its phases. At first, the proposer can prepare
observations using model based exposure time estimators
and data simulators. This is helpful for the selection of
instrumental modes and exposure times suited for opti-
mal information return. Second, the observatory controls
the instrumental configuration, tests data analysis proce-
dures, and provides calibration solutions with the help of
instrument models. Thirdly, the interpretation of the data
can be supported by the simulation of raw observational
data for a range of target properties.



570 P. Ballester and M.R. Rosa: Modeling echelle spectrographs

7. Summary

We have developed in this article the generic optical model
of two-dimensional cross-dispersed spectrographs starting
from first principles. On this bases a model was formu-
lated for the VLT instrument UVES, and its predictions
have been compared with a ray tracing analysis. In this
way it could be verified that local predictions of the model
are in full agreement with Code V, and that the accuracy
of the global geometry is only limited by the fact that we
did not attempt to include the effect of aberrations and
distortions. Similarly a model for the ESO La Silla instru-
ment CASPEC was confronted with real observations in
order to demonstrate the applicability of such models in
two important areas, namely wavelength calibration and
instrument configuration control. It has also been shown
how to derive simplified, but still accurate formulations
for practical use. Finally, the advantages of placing such
models into operational scenarios for observatories have
been discussed.
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A. Model for the CASPEC and UVES
spectrographs

This appendix describes the model used for the CASPEC
and UVES spectrographs. The optical design of the two
instruments is similar enough to justify the use of the same
description for both instruments. The analytical model
taking into account the 3-dimensional grating equations
involves the following successive steps:

– Slit rotation by an angle τ0 and collimation by FCOL

– Diffraction by the echelle grating
– Rotation by −µ1 about Y
– Rotation by −ν1 about X
– Rotation by −90 degrees about Z
– Diffraction by the cross-disperser
– Rotation by 90 degrees about Z
– Rotation by ν1 about X
– (We assume µ1 = −µ2, and skip two rotations about
Y )

– Rotation by −ν2 about X
– Projection onto the detector plane
– Offset in position (xd0, yd0)
– Rotation of the detector by an angle τ2.

The x-axis of our coordinate system is perpendicular
to the grooves of the echelle grating, the z-axis normal
to the surface. Nomenclature is as in Sect. 2 of the main
article. In addition, s is the position on the slit, FCOL the
focal length of the collimator, τ0 the angle of rotation of
the slit.

For practical purposes we construct a 4-dim vector us-
ing the wavelength λ and the projections x, y, z. The
initial ray has the directions and projections

γ = γE + cos(τ0)arctan(s/FCOL) (A1)

α = αE + sin(τ0)arctan(s/FCOL) (A2)

(x, y, z) = (sin(α) cos(γ), sin(γ), cos(α) cos(γ)). (A3)

The list of matrices for the above sequence of oper-
ations is given below, where after each pass through a
grating the z-component of the vector is determined from
the normalization relation

z2 = 1− x2 − y2 (A4)

ME =


1 0 0 0
m
σE
−1 0 0

0 0 1 0
0 0 0 1

 (A5)

R−µ1/y =


1 0 0 0
0 cosµ1 0 − sinµ1

0 0 1 0
0 sinµ1 0 cosµ1

 (A6)

R−ν1/x =


1 0 0 0
0 1 0 0
0 0 cos ν1 − sin ν1

0 0 sin ν1 cos ν1

 (A7)

R−π2 /z =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 (A8)

MCD =


1 0 0 0
1

σCD
−1 0 0

0 0 1 0
0 0 0 1

 (A9)

Rπ
2 /z

=


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 (A10)

Rν1/x =


1 0 0 0
0 1 0 0
0 0 cos ν1 sin ν1

0 0 − sin ν1 cos ν1

 (A11)

R−ν2/x =


1 0 0 0
0 1 0 0
0 0 cos ν2 − sin ν2

0 0 sin ν2 cos ν2

 · (A12)

One can at this stage either determine the complete
expression of xd and yd
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xd = FCAM
x

z
+ xd0 (A13)

yd = FCAM
y

√
x2 + z2

+ yd0 (A14)

or make the approximation tan(u) ≈ u and obtain

xd ≈ FCAM x+ xd0 (A15)

yd ≈ FCAM y + yd0. (A16)

Finally one applies the rotation of the detector:

xr = xd cos(τ2)− yd sin(τ2) (A17)

yr = xd sin(τ2) + yd cos(τ2). (A18)

B. Evaluation of the rotated echelle relation

In order to obtain an analytical least-squares solution we
use the simplified rotated echelle relation. The residual
(measurement − model) of a given line of index i (i =
1...N) at position (xi, yi) and of wavelength λi, and the
relative order number pi, is given by

Ri = (m+ pi)λi − a− b(xi + yi tanα). (B1)

One has to consider the case where the order number
m is also an unknown quantity since it has useful practical
applications. We rewrite, using tan(α) = c/b

Ri = (m+ pi)λi − a− bxi − cyi. (B2)

By determining the partial derivatives of R2
i with res-

pect to each parameter (m,a, b, c) we obtain a system of
the form Ax = B with A a 4 × 4 matrix and B a vector
such as

A =


Sλ2 −Sλ −Sxλ −Syλ
−Sλ 1 Sx Sy
−Sxλ Sx Sx2 Sxy
Syλ Sy Sxy Sy2

 (B3)

B = [−Spλ2 , Spλ, Sxpλ, Sypλ] (B4)

with the quantities Sx, etc... being defined as

Sx =
N∑
i=1

xi (B5)

Sxy =
N∑
i=1

xiyi (B6)

Sx2 =
N∑
i=1

x2
i (B7)

and similar formulae for Sy, Sλ, Spλ, Syλ, Sxpλ, Sypλ, Sy2 ,
Sλ2 , Sp2λ2 , Spλ2 .

The full system was solved using mathematical pack-
ages, and solutions for subsets with fixed parameters were
determined with a view towards robust techniques for
practical calibration procedures.
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