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T HE theory of the concave grating was de­
veloped, to a large degree, by Rowland 

hirnself ;1 later contributions were rnade by 
Glazebrook,2 Mascart,3 Baily,4 and, to an irn­
portant degree, by Runge. 5 The use of the con­
cave grating in grazing incidence has been in­
vestigated by Mack, Stehn, and Edh~n, 6 and by 
Bowen. 7 N urneraus other contributions to special 
aspects of grating perforrnance, such as astigrna­
tisrn and aberration, will be cited when these 
subjects are discussed. 

In the present article, a general theory of the 
irnage forrnation of the concave grating, based on 
Ferrnat's principle, will be developed. Such a dis-

* This paper was nearly completed at the time of 
Dr. Beutler's death on December 17, 1942. It has been 
prepared for publication by Commander R. A. Sawyer, 
U.S.N.R., Naval Proving Ground, Dahlgren, Virginia. 
Although Dr. Beutler had intended to enlarge some parts 
of this paper, it is believed to be sufficiently complete to 
be of in terest. 
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cussion should be useful in the consideration of 
questions that arise on the adjustment of concave 
gratings. For the images forrned by the concave 
grating are subject to the inherent imperfections 
of all irnage formation, and the magnitude of 
these imperfections must be calculated so that 
they rnay be distinguished from the effects of 
imperfections in ruling and in the figure of the 
grating itself which are always present io a 
greater or less extent. Furthermore since gratings 
are individually ruled, and are usually mounted 
and adjusted in the research laboratory, there is 
greater need for information as to their adjust­
ment than there is in the case of prism spectro­
graphs, which are most often tested and furnished 
by the rnakers as complete instruments. The 
usefulness of a knowledge of the general theory 
of the grating, therefore, seems likel.y to persist 
for some time. 

I. THE CONDITIONS FORA FOCUS 

In Fig. 1, light coming from a point A falls on 
the point P, on the surface of a concav.e grating, 
and is diffracted to the poin t B. The origin, 0, of 
the cartesian coordinate system is taken in the 
center of the grating surface, with the x-axis 
horizontal, and· the z-axis vertical and parallel to 
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the grating rulings. Points in the light source A 
(i.e., of the slit of the spectrograph) are desig­
nated by the coordinates x, y, z; points of the 
image or spectralline, by x', y', z', and points on 
the grating surfaces, by ~' w (width) and l (length 
of rulings measured from the center). The coordi­
nate ~' parallel to the x-axis, gives the distance of 
any point on the surface of the grating blank 
from the l-w plane. 

The light path is, then, the two straight lines, 
AP and BP, whose lengths are expressed in 
reetangular coordinates as 

(AP)2 = (x-~) 2+ (y-w) 2+ (z-l) 2 ; (1) 
(BP)2= (x' -~)2 +(y' -w)2+( -z' -l)2. 

The signs of z, and z' have been chosen oppo­
sitely to account for the fact that, because of 
reflection at any grating point, P, the points A 
and B will lie on different sides of the X Y-plane. 
A ancl B do not, however, necessarily lie on 
opposite sides of the .... YZ-plane, since cliffraction, 
as weil as reflection, occurs in the y-direction. 
Thus the signs of y and y' are independent of one 
another. The x-coordinate is always positive for 
reflection gratings. 

For practical purposes it is convenient to ex­
press Eqs. (1) in terms of the distances between 
the points A and B and the grating center, 0, 
and of the angles of incidence and diffraction, 
both measured in the x-y plane from 0 to the 
projections of A and B. Hence, cylindrical CO­

ordinates with their origin in the center of the 
grating are introduced, (r, a) for A, and (r', ß) 

(l,z,z') 
• I 
I 
I 

A 

B 

FIG. 1. Imageformation bv the concave grating. 

for B as follows : 

x=r cos a, 
y=r sin a, 

x' =r' cos ß; 

y' =r' sin ß. 
(2) 

The signs of a and ß are dependen t on those of y 
and y' respectively, and are opposite if A and B 
lie on different sides of the grating normal. 

All points, P, of the grating surface lie on a 
sphere of radius R and so must satisfy the 
equation, 

whence 
(3a) 

By application of the formula for the roots of a 
quadratic equation 

~=R±[R2 - (w2+l2)]!. 

Only the negative value of the radical is signifi­
cant, since the positive value Ieads to the points 
on the opposite end of the diameter. Expanding 
the solution, with the negative radical, in apower 
series 

w2+l2 (w2+/2)2 (w2+l2)3 
~=--+ +---

2R 8R3 16R5 

5(w2+l2) 4 

+ + .. ·. (4) 
128R7 

The "rulings" on the reflecting grating are 
grooves that have been cut or "ruled" into the 
blank concave mirror. Rowland1 showed that 
they should be so spaced on the spherical surface 
as to be equally spaced on the chord of the 
circular arc in the x, y plane; i.e., they are the 
traces of equidistant planes perpendicular to the 
w-co-ordinate. The reflectivity of the grating 
surface varies periodically with w because of the 
grooves. F or most purposes it is sufficien t to 
represent the diffracting areas by simple lines, 
equally spaced and located at the centers of light 
intensity of the actual areas. Details of phase 
variation of the light reflected from various 
points across the areas are thereby ignored. 
Actually these phase variations do exist and 
depend on both the shape and the spacing of the 
rulings as weil as on the angles of incidence and 
diffraction. The phase variations are of im­
portance in considerations of the intensity distri-
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bution in the spectrum and of the relative 
intensity of different orders. 

To introduce into the equations a set of equally 
spaced lines as rulings, it is sufficient to define the 
co-ordinate was having only discrete equidistant 
values fixed by the grating constant, d (the dis­
tance between the rulings). Thus wjd is a pure 
number which is permitted to have only integral 
values, counting from the grating center to either 
side. As in the case of the plane grating, the light 
path for neighboring grooves must differ by one 
wave-length, or by an integral multiple of one 
wave-length, in orderthat the rays may reinforce 
one another. That is, the path difference for any 
two grooves separated by w is (w/d)mA., where m 
is an integer called the order number. If light 
from any point, P, is to contribute to the image, 
light originating in point A and focused in B, 
must satisfy the light path function, F, 

F=AP+BP+(wld)mA.. (5) 

This function is a characteristic function in the 
sense of Barnilton ;8 it represents the permissible 
lengths of the various lightpaths from A toB, as 
the point P wanders over the ruled surface of the 
grating. The various rays must arrive at B with 
the same phase in order to produce reinforeerneut 
of the amplitudes. Therefore Eq. (5) must be 
fulfilled within the limits of a quarter wave­
length by Rayleigh's criterion. 

According to Fermat's principle of least time, 
pointBis located so that this function will be an 
extreme for any point, P; and to focus A at B, 
all these extremes for the various points, P, must 
be equal. The conditions for focusing the light 
from different parts of the grating may be 
separated. Thus to get a focus for light from 
points along w in the diffracting surface of the 
grating, the condition for equal extremes of the 
light paths isthat the partial derivative of F with 
respect to w be zero, or 

aFiaw=O. (6a) 

Likewise a focus for the light from any vertical 
section of the grating requires 

aFißl=O. (6b) 

These partial derivatives have the geometrical 
significance of angles. If their values are zero, 

8 W. R. Hamilton, Mathematical Papers. (The University 
Press, Cambridge, England, 1931). Vol. I, p. 17 

then the direction of the light beam coming from 
A and refiected at points P along w or l, re­
spectively, is strictly towards B. Any deviation 
of the partial derivatives from zero indicates that 
some light falls outside of B, and that the image 
formation is not perfect. The displacement of 
such light sidewise from the focus can be calcu­
la ted readil y : i ts distance will be r' a F I aw ( or 
r'aFial, respectively) from the pointBin a plane 
that is perpendicular to the beam at B. If the 
normal to the focal plane is inclined to the beam 
by the angle I', then in this inclined plane the 
light will fall at the distance L1p from B, given by: 

L1p=r'(aFjal)(1/cos 1'). (6c) 

The fact that the image at the point B is in 
reality a diffraction pattern allows a range of L1p 
within the width of the central maximum of the 
diffraction figure without much loss in resolving 
power. 

In addition to the loss of light at the focal 
point, there isanother loss in intensity because of 
light that reaches B with the wrong phase. If a 
part of the grating along the w-coordinate is not 
at the proper distance from the points A and B, 
then the partial derivative aF I aw :will not be 
zero; the path difference in the light beam 
accruing over the length dw will amount to 
L1F= f(8Fiaw) ·dw. The condition for reinforee­
rneut of the light beams is that over the entire 
grating the value ofthisintegral does not exceed 
the value ±A.I4; the necessary condition is: 

L
+WI 2 aF A. 

L1Fw= -·dw~-. 
-lV/2 aw 4 

(6d) 

(W is the full width of the grating). 
Forthel-coordinate and its respective focus, a 

similar equation holds: 

i
+LI 2 ßF A. 

L1Ft= -·dl~-. (6e) 
-L/2 az 4 

(L is the fulllength of the rulings.) Equation (6a) 
is necessary for the general focusing conditions 
of the grating; (6c) for the quantitative treat­
ment of coma and curvature; and Eq. (6d) will 
be used to derive the spherical aberration; ac­
cordingly, Eq. (5) may be written more exactly: 

F=AP+BP+(wld)m'A.±A.I4. (Sb) 
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li. THE GENERAL EQUATIONS 

The formulas (1) to (6) express all the facts about the optics of the grating, except those for groove 
form, that Iead to the intensity relations. For an analysis of the geometrical optics of the concavP 
grating, these expressions must be related and evaluated. Theseries expansions, although somewhat 
cumbersome, will be used because of the significance that can be attached to the various terms. The 
expressions for AP and BP are identical in form, except for the primed coordinates in the latter, and 
therefore only the derivations for AP are presented. 

(AP)2 = (x-~) 2+(y-w)2+ (z-l) 2 ; 

= x2+y2+z2+e+w2+l2 - 2x~- 2yw- 2zl. (1) 

lntroducing expressions (2) ancl (3a), 

(A P)2 = r 2 + z2 + 2R~- 2x~- 2yw- 2zl. 

Using expressions (2) ancl (4) for x, y ancl ~' 

( 
r ) ( (w2+l2)2 (w2+J2)3 ) 

(AP)2=r2+z2-2r·w·sin a-2z·l+ 1--·cos a w2+l2+ + + · · · 
· R 4R2 8R4 

= r2
- 2rw · sin "+w' sin 2 a+w' cos2a - : w' cos a+ l' ( 1- : cos ") 

( 
r ((w2+l2)2 (w2+l2)3 ) 

-.2zl+z2+ 1--·cos a) + + .. · . 
R 4R2 8R4 

Whence 

(AP)'= (r-w sin a)'+w'( cos2 a-: cos ") +l'( 1-: cos ")- 2lz+z' 

(w2+f2)2( r ) (w2+l2)3( r ) 
+ 1-- cos a + 1-- cos a + · · ·. 

4R2 R 8R4 R 
{7) 

The square root can be approximated by series development, whence 

!w2(cos2 a- (r /R) cos a) (1- (r /R) ·cos a) 
AP=r-w·sin a+ +!l2

-------

r-w sin a r-w sin a 

-2lz+z2 (w2+l2)2 (1-(r/R) cos a) w4(cos2 a-(r/R) cos a) 2 
+~ . + +... (8) 

r-w sm a 8R2 (r-w sin a) 8(r-w sin a) 3 

and by further series development the final expression is: 

(
cos2 a cos a) ( 1 cos a) lz z2 

AP=r-w sin a+~w2 ----- +!l2 ---- --+~+ ... 
r R r R r 2r 

w sin a (w2 +l2) 2 w sin a(1 cos a) sin2 a(cos2 a cos a) 
+---·(-2lz+z2)+ --- ---- -· · ·+!w4-- ------

2r2 8R2 r r R r 2 r R 

w2 sin2 a(l cos a) w
2 sin2 a w

4 (cos2 a cos a) 2 

+tl2 ---- + (-2lz+z2)-- ----- +· · ·. 
r 2 r R 2r3 8r2 r R 

(9) 
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In order to simplify the discussion of this very cumbersome expression, write: 

(10) 

and similarly for the diffracted beam : 

(11) 

For further use in the following sections, the expressions for AP and BP are tabulated separately: 

(
cos2 a cos a) sin a(cos2 a cos a) sin2 a(cos2 a cos a) 

F2=!w2 ----- +!w3-- ------ +!w4-- ----- +···, 
r R r r R r 2 r R 

( 
1 cos a) lz z2 

F3=!l 2 
---- --+-, 
r R r 2r 

sin a(l cos a) w sin a 
F4=ftl 2w-- ---- +---(2lz+z2), 

r r R 2r2 

F
1 

(w
2+l2

)
2 
.w sin a(~- cos a)· 

8R2 r r R 

F1' =r' -w sin ß, 

F 
2
, = !w2 (cos

2 ß _ cos ß) + !w3 sin~(cos
2 ß _ cos ß) + ~w4 • sin 

2 ß (cos
2 ß _ cos ß) + ... ' 

r' R r' r' R r' 2 r' R 

( 
1 cos ß) lz' z' 2 

F3'=!l2 
---- --+-, 
r' R r' 2r' 

sin ß( 1 cos ß) w·sin ß 
F/=!l2w-- ---- + (-2lz'+z' 2), 

r' r' R 2r' 2 

F
6
·, = -~(cos2 ß _ cos ß) 2 

8r' 2 r' R 

3w5 sin a(co~2 ß _ co_s ß) 2
, 

8r'3 r' R 

(lOa) 

(lOb) 

(10c) 

(lOd) 

(10e) 

(10f) 

(lOg) 

(11a) 

(11b) 

(llc) 

(lld) ' 

(lle) 

(llf) 

(llg) 
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These somewhat cumbersome appearing ex­
pressions are actually convenient and of physical 
significance for the treatment of the grating 
theory. The order of the terms is that of de­
creasing magnitude for all cases except those of 
very large angles of incidence, a, and of diffrac­
tion, ß. It is accordingly easy to estimate the 
errors that are introduced by the neglect of any 
of the higher terms of the expansion. Further­
more, most of the expressions have individual 
physical significance, either as regards the image 
formation or its imperfections. The terms 
(F1 + F1'), and (F2+ F2') give the condition for 
image formation for both the plane and the 
concave grating. (F2+ F2') can and must be made 
zero for a good focus. (F3+ F/) gives the astigma­
tism and (F4+F4') the coma in the image and the 
curvature of the spectrallines. In general neither 
fault can be avoidecl completely. (F5+ F5') de­
termines the spherical aberration, thereby limit­
ing the useful size of the grating for any par­
ticular values of a, ß, R, ancl d. (FG+ FG') can be 
kept equal to zero, and (F1+ F/) represents a 
higher order aberration, which can usually be 
kept negligible in comparison to (F5+F5'). 

The decreasing orcler of magnitude of the suc­
cessive expressions is seen from the fact that they 
contain successively higher inverse powers of R, 
r or r' ,-all of which are usually quite large in 
comparison to the grating width, w, or length, l. 
The numerical values of the expressions are given 
below for a 20 foot concave grating with a ruled 
surface six by three inches. I t is assumed that 
incidence is nearly normal (a and ß less than 50°) 
and therefore the trigonometric functions of a 

and ß can be neglected as of a lower order of 
magnitude than the other terms. 

The results are : 

F1+F1' '"'-'800 cm, 

F2+F2' "'5 cm (can be made zero), 

F 3+F3' '"'-'2 cm (astigmatism), 

F4+F41 '"'-'.01 cm (coma and curvature of lines), 

F5+F5''""" 10-4 cm (aberration), 

F6+F6' "'10-5 cm (can be made zero), 

F1+ F/ ~s X 10-s cm. 

The expression "can be made zero" indicates 

that these terms vanish in certain mountings of 
the concave grating, i.e., for certain definite 
relative positions of the light source and image 
with. respect to the grating. The most important 
mountings having these good optical properties 
are those which use the Rowlancl circle or which 
use the region in the neighborhood of the grating 
normal only. 

An advantage of the development of the 
characteristic function, F, in a sequence of mem­
bers of rapidly decreasing magnitude lies in the 
ease with which the pa_rtial derivative of F may 
be obtained. If ß(F1+F2+F3)jaw=O has tobe 
calculated, and F1, F2, F3 · · · are of very different 
magnitudes, then it is convenient to make 
aFrJaw=O, before investigating ßF2/aw=O. Both 
must be satisfied simultaneously before aF3jaw is 
to be taken into account. The expressions form 
a set of separable conditions the physical signifi­
cance of which can be readily understood. 

The characteristic grating equation F (Eq. (5)) 
becomes, by the introduction of expressions (10) 
and (11), 

F= F1 + F2+ F3+ · · · F1' + F2' + F3' 

+ · · · +w/d·m'A. (12) 

This equation contains the expressions of 
(10a) · · · (10g) and (11a) · · · (11g) and is to be 
subjected to the operations of ( 6a), ( 6b), and 
( 6c) in the following sections. 

III. THE GRATING EQUATION 

Using only the first terms of the exparision of F 
and the last term in (12), 

Introducing the expressions (10a) and (11a) 

F 1°=r-w·sin a+r' -w sin ß+w/d·m'A (13) 
=r+r'-w(sin a+sin ß)+w/d·m'A. 

Applying Fermat's principle (6a), aFjaw=O, 

(1/d)m'A=sin a+sin ß. (14) 

· This expression will be recognized as the 
well-known equation for the plane grating 
m'A = d(sin a+sin ß) which is obtained here as the 
first approximation. I t follows from the postulate 
that neighboring grooves give rise to spectral 
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lines if the various light paths differ in length by 
X or an integral multiple of X. 

It will be seen that this expression holds ex­
actly for the plane grating, because for the plane 
grating, R is infinite, and so also are r and r' since 
there is no focusing effect. Thus all the highet 
members, F2, F/ · · · F1, F1' are exactly zero. 

On the other hand, Eq. (14) holds for the con­
cave grating too. I t gives the condition for the 
focusing of wave-lengths at particular angles of 
incidence and diffraction, and the rule for the 
overlapping of different orders. The quantitative 
evaluation of Eq. (14) is shown graphically in 
Fig. 2, which gi"yes the dependence of the dif­
fracted wave-length on th~ angles of incidence 
and diffraction for a grating with 30,000 lines per 
inch (or more exactly 12,000 lines per cm) andin 
the first order. 

In order to find the wave-lengths obtained in 
the second order ( or in general in the mth order), 
it is necessary only to divide all the values in the 
chart by two (in general, by m). If a 15,000 lines­
per-inch grating is used, the wave-lengths of 

The question arises as to which of these posi­
tions is best. There is no simple answer. As long 
as only a limited range of wave-lengths is wanted, 
the answer depends on the qualities desired in the 
photograph. An optimum resolution may be 
wanted at a particular wave-length, in which case 
the effect on the aberrations of the various possi­
ble angles of incidence and diffraction must be 
studied; or a maximum of intensity may be 
wanted in some region, and in that case the 
astigmatism and the shape and spacing of the 
grooves in the grating to be used are important 
for the choice of a and ß. In general, however, the 
requirement is not to favor one property at the 
expense of all others, and a compromise is made 
among the various optimum conditions. The 
compromise is often complicated by the desire to 
cover an extensive wave-length range and still 
maintain nearly ideal intensity and resolution for 
the entire range. 

The derivations of this article are intended to 
elucidate the properties of concave gratings at 

Fig. 2 are those which will appear in the second 
order, while the first-order wave-lengths will have 
double the values of the chart. Accordingly, the 
shape of the curves of equal wave-length, which 
may be called isochromats, is the same for any 
grating spacing or order. They are simply the 
graphs of the angular function (sin a+sin ß). 
The wave-length values tobe attributed to these 
curves follow from the equation, m"A·l/d=con­
stant, and can easily be calculated in any given 
case. 

IV. THE MOUNTINGS OF THE CONCAVE GRATING 

Before further development of the theory is 
undertaken, the most common mountings of the 
concave grating will be discussed briefly, so that 
their optical properties can be referred to in the 
later discussion 

It is evident from Fig. 2 that the same wave­
length may often be obtained at various angles 
of incidence and diffraction. For example, 6000A 
in the first order, or 3000A in the second, can be 
observed at 

different angles, and to permit the evaluation of 
the imperfections of gratings under different con­
ditions. On the basis of this information the best 
compromise for any particular use may then be 
chosen and such compromises have led to several 
different methods of mounting the concave 
grating. Of course, the ideal mounting of a 
grating would be a mechanism enabling its use at 
any angle of incidence and diffraction and thus 
allowing the best compromise for any particular 
problern at any accessible wave-length. Such a 
mounting requires that two of the three elements 
-grating, slit, and plateholder-be movable 
independently along the Rowland circle. This 

. flexibility cannot be reconciled with the reguire­
ments for exact mechanical precision and rigidity 
in the relative position of the different parts,-at 
least not for instruments of ten or twenty foot 
size. In addition, it would require gratings of 
much higher perfection than hitherto ruled, and 
especially the elimination of the error of run. 
Therefore, all the mountings of grating spectro-
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order 

g60r=~~~~~~~~~~~~~~~~*-~~~~~~~~~~ 
FIG. 2. Wave­

lengths dif­
fracted by a 
12,000 lines per 
cm grating for 
all angles of in­
cidence and dif­
fraction. 

CU 

~50~~--T-~~~~~~~~~~~~~~~~~~~~~~--~~ 

~40r-~~~~~~~~~~~~~~~~~~~~~~~~~~--~~ 
~ 
'DO 

~30~~~~~~-f~~~~~~~~~~~~~~~~~~~~=-~~ 

graphs impose certain restrictions on the ac­
cessible range of angles. 

Rowland, himself, used for image formation 
only the region near the normal of the grating: 
the angle ß was kept small,-between plus and 
minus ten degrees. For a 30,000 lines per inch 
grating in the first order, Fig. 2 shows that with 
Rowland's arrangement a range of about 2700A 
will be covered in one setting. The angle of inci­
dence a can vary from about 20° to 80°. The 
range covered by the Rowland mounting is shown 
in Fig. 3. It may be remarked here that a 
mounting quite different from Rowland's in me­
chanical details, but essentially equivalent opti­
cally, was devised by Abney. 9 

A quite different mounting is that of Eagle.l0 

This arrangement is similar to the Littrow mount­
ing of the prism. The slit and plateholder are 
closc tagether and fixed in relative position. To 
obtain the desired wave-length range, the grating 
is turned and moved back and forth, while the 
plateholder is also varied in tilt. The angles of 
incidence and diffraction are thus nearly equal, 
a"-'ß, and are varied simultaneously. In Fig. 3, 
the range covered by the Eagle mounting crosses 
the right-hand square diagonally. Slight varia­
tions of the Eagle mounting are possible, as the 
slit may be at one siele or the other of the plate­
holder, or above it, a <, =or>ß. The relative ad-

9 W. devV. Abney, Phil. Trans. 177, 457 (1886). 
10 A. Eagle, Astrophys. J. 31, 120 (1910). 

vantages of these modifications will be discussecl 
later. 

A third type of mounting was devised by 
Paschen and Runge,11 and is often referred to as 
the Paschen circle. A constant angle of incidence 
is chosen, often in the neighborhood of 45°, and 
the angle of diffraction extends over a very large 
range of the focal circle, perhaps from -40° to 
+70°. In Fig. 3, this mounting is represented by 
a horizontal box. 

It can be seen from Fig. 3 that the Eagle 
mounting covers the largest wave-length range of 
the three types of mountings, because it alters a 
and ß simultaneously and thus changes the func­
tion (sin a+sin ß) by the largest amount. Of the 
standard mountings, the Eagle mounting, alone, 
makes accessible the Iongest wave-Iengths, which 
are found in the upper right-hand corner of Fig. 2. 

ANGULAR RANGE AS COVEREO DY DIFFERENT MOUNTINGS 

ANGLE OF O!FFRACT!Off 

FIG. 3. Angularrange covered by various 
grating mountings. 

11 C. Runge and F. Paschen, Anh. z.d.Abh. d. Berlin 
Akad. d. Wiss (1902), 
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For very short wave-lengths ( < 1000A) in the 
vacuum region, a mounting developed by Hoag12 

has been widely used.13 This "grazing-incidence" 
mounting uses large angles of both incidence and 
diffraction-usually 80° or more for a and 60° 
and more for ß. In Fig. 3, the wave-lengths 
handled by this mounting are found in the upper 
left-hand corner. I t will be noticed from Fig. 2 
that the dispersion in this region is very large and 
may be as much as 2.5 times larger than the dis­
persion when these wave-lengths are produced by 
small values of the angles a and ß. The optical 
properties of this mountirtg are considerably 
different from those of the other mountings. 

V. THE FOCUSING CONDITIONS FOR THE 
ROWLAND CIRCLE AND FOR. THE 

WADSWORTH'S MOUNTING 

Returning to the discussion of Eq. ( 14), 
m>..=d(sin a+sin ß), it is to be noted that this 
expression gives no information on the focal con­
ditions for the concave grating, since r and r' do 
not appear. However, if R has a finite value for 
the grating, the second and higher terms of the 
function F have appreciable values, and their 
partial derivatives must be investigated and sub­
jected to Fermat's condition. 

Considering, first, the members, F2 and F/, 
which have the largest values, and applying 
Fermat's condition, a(F2+ F2') I aw= 0, the intro­
duction of the complete expressions (lOb) and 
(11b) gives 

aw 

3 [sin a(cos
2 a cos a) +z-w2 -- ------

r r R 

+ sin ß(~os
2 ß _ cos ß) ]+ ... = O. (16) 

r' r' R 

The first member of this expression vanishes if 

cos2 a cos a cos2 ß cos ß 
-----+-----=0, (16a) 

r R r' R 

12 B. Hoag, Astrophys. J. 66, 225 (1927). 
13 For instance by M. Siegbahn, B. Edlen, and J. 

Soederguist. Papers in Zeits. f. Physik (since 1930), J. E. 
Mack, P. G. Kruger, and I. S. Bowen in Phys. Rev. 
(since 1930). ' 

or 

cos a(cos a _2._) +cos ß(cos ß _2._) = 0. (16b) 
r R . r' R 

One of the solutions of this equation is sym­
metrical in a and ß, ancl is, by inspection, 

r = R cos a ; r' = R cos ß. ( 1 7) 

These values make the second member of ex­
pression (16) equal to zero also. 

These relations are the equations in polar Co­
ordinates of a circle of diameter R, on which the 
points r and r' lie. That is, the light source and 
spectrallines are on a circle, to which the grating 
is tangent, and which has as a diameter the 
radius of the grating blank. This circle is known 
as the "Rowland Circle." 

Another solution of Eq. (16a) is not sym­
metrical and represents the case when parallel 
light strikes the grating, and the image is ob­
served on the normal. Therefore 

(18) 

Introducing these conditions in Eq. (16a), there 
follows 

r' = R/ (1 +cos a) (19) 

as the focal condition for points on the normal of 
the grating if parallel light strikes the grating at 
an angle a. The focal curve given by Eq. (19) is 
a parabola (in polar coordinates), with its focus 
at the center of the grating. 

The arrangement of the concave grating, de­
scribed by Eqs. (18) and (19), is the so-called 
"stigmatic mounting" ·of Wadsworth.14 The 
optical properties of this mounting and the mathe­
matical treatment are widely different from those 
of the Rowland mounting. They will be discussed 
after the treatment of the Rowland circle. 

VI. THE OPTICAL IMAGE IMPERFECTIONS ON 
THE ROWLAND CIRCLE 

(a) The Conditions for the Cubic and Higher 
Order Terms to Vanish 

Equations (14), (17), and (19) give all the 
necessary information for the ·calculation of the 

14 F. L. 0. Wadsworth, Astrophys. J. 3, 54 (1896). 
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dispersion of concave grating spectra. They do 
not, however, include the optical properties of 
the image formation or the aberrations of the 
image. To discuss these questions it is necessary 
to return again to Eqs. (15) ancl (16) and con­
sider the higher members of the expressions, 
remembering that for the Rowlancl circle, with 
source and slit on the circle, 

r=R cos a; r' =R cos ß. (17) 

I t will be seen that all the higher terms in the 
expressions (lOb) and (11b) vanish, as weil as 
the first terms, since all contain as factors one of 
the functions (cos2 a/r-cos a/R) or (cos2 ß/r' 
-cos ß/R), each of which becomes zero for the 
conditions of Eq. (17). Therefore, Eq. (16) is 
fulfilled exactly. 

Furthermore, the same angular functions ap­
pear in every term in the expressions ( 1 Of) and 
(11f), as weil as in their partial derivatives with 
respect to w, a(F6+Fs')jaw. Again, then, the 
condition (17) for the Rowland circle reduces 
each terrri in these expressions to zero. 

These results show the justification for the use 
of the Rowland circle with the concave grating. 
On the other hand, for any position of the light 
source, inside or outside of the Rowland circle, it 
is possible to satisfy the condition (16a) 

cos2 a cos a cos2 ß cos ß 
-----+-----=0, 

r R r' R 

since for any given r and a, and with ß clefined for 
the desirecl wave-length according to (14), a 
solution is 

I (cos a+cos ß 
r'=cos2 ß 

R 
(22) 

For this solution, however, the two functions 
(cos2 a/r-cos a/R) and (cos2 ß/r' -cos ß/R) do 
not vanish separately. Therefore, the seconcl ancl 
higher terms of the derivative a(F2+ F2') I aw do 
not vanish, since in them the two expressions 
have different coefficients,-functions of sin a/r 
and of sin ß/r' respectively. The Rayleigh con­
dition (6d) must then be applied, and gives, for 
the second terms of the cxpression, (lOb) 
and (11b) 

J+lVI2 a(F2<2> + F2'<2>) 
------dw 

-lV/2 aw 

= w~[sin a(cos
2 a- cos a) 

2 r r R 

sin ß(cos
2 ß cos ß)] ~ +- ----- <. 

r' r' R 4 
(23) 

Since all other quantities in Eq. (23) are fixed 
by the choice of a, r ancl Rand the resulting de­
termination of ß and r' from Eqs. (14) and (22), 
wa is the only variable and is therefore limited in 
size. For example, for a grating with a 20-foot 
focal length and 30,000 lines per inch, with 
a = 30° ancl ß = 0°, giving 3000A in the second 
orcler, if the light source is placecl, not on the 
Rowland circle, but at a distance, from the 
grating, r a, which is 10 percent greater, applica­
tion of Eq. (23) shows that W is limited to 5 cm. 
In other words, only 60,000 lines can contribute 
to the intensity of the spectral lines, and the 
resolving power in the second order is thereby 
restricted to about 120,000. If the deviation from 
the Rowlancl circle is 1 percent, the limiting value 
for W is 10.3 cm, about 35 percent of the value for 
exact position on the circle, as shown later 
(Eq. (29)). These values, 5 and 10 cm, consider 
only the limiting influence of the second members 
of (lOb) and (11b). Actually if r:;t.R cos a, addi­
tional limitations arise from other terms in ex­
pressions (10) and (11) ,-especially from the first 
members of (10f) and (11f),-and reduce the 
useful grating width still further, by about 
25 percent. 15 

It is clear that the Rowland circle is important 
as a locus for which the aberration of the grating 
arising from aFjaw is reduced to a minimum. 
This aberration cannot be eliminated completely 
by the use of the Rowland circle mounting, 
however, because there are higher terms in F 
which contain other angular functions that do 
not vanish when r=R cos a and r' =R cos ß. 

There are, of course, other imperfections in the 
image formation than those involving aFjaw, and 
some of these will be cliscussed later. Thus the 
expressions Fa and Fa' contain l, z, and z', but 

ts Compare the results ohtained by an approximated 
treatment of the sameproblern by D. L. Ma.c Adam, J. Opt. 
Soc. Am. 23, 178 (1933). 
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not w. They therefore make no contribution to 
the above-mentioned aberration in the x-y plane, 
and their influence can always be minimized by 
keeping z and l small. The optical imperfection 
arising from a(F3+Fa')jal-:;6.0 is called astigma­
tism and will be discussed later. 

(b) The Aberration on the Rowland Circle 

The largest contributions to the aberration, 
which is the analog of the spherical aberration of 
lenses, arise from the members F5+F5', in which 
the expression (w2+l2)2 is combined with an 
angular function ~' defined from 

1 l ) (w2+l2)2 
+---cosß = ·~. 

r' R 8R2 
(24) 

For the Rowland circle, introducing (17), ~ has 
the form 

1 cos a 1 
~ +-----

R cos a R R cos ß 

_ cos ß =~(sin2 

a + sin
2 ß)· (2S) 

R R cos a cos ß 

This expression vanishes only if both a and ß 
are zero. I t is symmetrical in a and ß, becoming 
!arger as both increase. 

Since Eq. (24) is symmetrical in wand l, it is 
convenient to put p2=w2+l2. p then has the 
significance of the radius of a circle, the center of 
which is the midpoint of the grating, and the 
plane of which is tangent to the grating. The 
condition for image formationisthat F5+F5' is 
not greater than X/4, as p increases from zero to 
its limiting value. Therefore, 

(26) 

Eliminating X by Eq. (14), 

p
4 (sin 2 

a sin2 ß) d 
-- --+-- ~ -(sin a+sin ß), 
8R 3 cos a cos ß 4m 

(27) 

or 

2R3d sin a+sin ß 
·P4 ~ -------­

"-' m sin 2 a sin 2 ß 
--+--
cos a cos ß 

2R3d 2(sin a+sin ß) cos a cos ß 
~--- ' 

m (cos a+cos ß)(1-cos a cos ß) 
and 

(
2R3d a+ß cos a cos ß )t 

p~ --tan--· . 
m 2 1 - cos a cos ß 

(28) 

(29) 

The expression gives the optimum aperture of 
a grating. I t is a circle, of which the radius in­
creases nearly linearly with the radius of curva­
ture of the grating (more exactly: proportionally 
to Rxl). The aperture is larger for coarser rulings 
(!arger d) and smaller for higher order spectra 
(!arger m). 

Special cases of Eq. (29) have been given by 
other authors. Runge calculated for the Rowland 
mounting, with ß near zero, the optimum width, 
B, corresponding to 2p 

Runge's expression follows from (29) by putting 
ß=O, and writing (1-cosa)=2sin2 (a/2), and 
2 sin (a/2) ·cos (a/2) =sin a. 

Equation (29a) also holds for the Eagle mount­
ing, because, replacing ß by a, since a equals ß 
in the Eagle mounting, Eq. (29) reduces to 
(29a), as can be seen easily. 

For grazing incidence, the optimum width is 
of importance, because it is much smaller than 
for the ordinary use of the grating. Mack, Stehn, 
and Edlen16 derived for this case 

(
4XR3 

B=2.36 -7r-

cos a cos ß )t 
. (29b) 
(1-cos a cos ß)(cos a+cos ß) · 

This expression may be derived from (29) or 
better from (26), which contains X. From (27) 
and (28) 

p
4 

(sin
2

a sin
2
ß) X - --+-- ~-, 

8R 3 cos a cos ß 4 
(30) 

16 J. E. Mack, J. R. Stehn, and B. Edlen, J. Opt. Soc. Am. 
22, 245 (1932). 
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Optimum area of a grating in units of Po=~ 
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FIG. 4. Optimum 
radius of grating for 
all angles of inci­
dence and diffrac­
tion in units of p = 
(2R3d/m)i. 
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Angle o f diffraction 

and 

I (sin2 a sin2 ß) 
P4~ 2'ARa --+-­

cos a cos ß 

( 
cos a cos ß ) 

=2AR3 , 

sin2 a cos ß+sin2 ß cos a 

( 
AR3 cos a cos ß )l 

p=1.19 . 
(1-cos a cos ß)(cos a+cos ß) 

(31) 

But since ß = 2p, this gives (29b), with the 
numerical constant 2.38 ( or 2.36( 4/lr) l) insteacl 
of 2.51. The small discrepancy of 5 percent arises 
from the somewhat different assumptions ancl 
methods of evaluation. MacAclam17 has pointecl 
out that the two assumptions are nearly equiva­
lent. 

In Fig. 4 the angular function 

( 
a+ß cos a·cos ß )l 

Y= tan--· , 
2 1 - cos a · cos ß 

(32) 

that Iimits the circular opening of the grating is 
representecl, the angle of inciclence and of diffrac­
tion being the coordinates. The curves connect 
equal indicated values of Y, and the numerical 

17 D. L. MacAdam, J. Opt. Soc. Am. 23, 178 (1933). 

amounts are given beside each curve. These 
numbers must be multiplied by the factor 
(2R3d/m)i to obtain the radius p in cm for the 
optimum aperture of the grating. Fora survey, 
the following table gives the values of the fourth 
root expression for the gratings most frequently 
used: 

TADLE I. Values of (2R3d/m)i, form= 1. 

R 1-met~r 10-foot 21-foot 30-foot 

d=J5000lines/inch 4.27cm 9.74cm 17.19cm 22.46cm 
d =30000 lines/inch 3.59 cm 8.19 cm 14.46 cm 18.89 cm 

For the most frequently used angles, the value 
of Y is near to unity; then in the first order, the 
values in the table, multiplied by two, give the 
allowed width ( = 2p) of the grating. The restric­
tion of the opening to a circle is not important 
for Iarge values of 2p, because the. rulings are 
not long enough to cover even the allowed 
circle. But for grazing incidence, where Y cl~­

creases to 0.2 and Iess, the circular diaphragm 
should be introduced. 

(c) Limitation of the Attainable Resolving Power 
and the Intensity Imposed by the Aberration 

\i\Thenever gratings are to bc used to give a 
maximum resolving power in somc broad wave-
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length range,18 it is important to investigate how 
the choice of Rand d of the grating can minimize 
the restrictions imposed by the aberration. 

It is evident from Eq. (29) that, the variables 
m and d being constant, an increase of the radius 
of curvature increases the maximum resolving 
power only moderately, namely proportional to 
R~, since the allowed width grows with this 
power. In the same grating (R and d being 
constant) the resolving power increases with 
higher order of the spectrum. The usual rule, that 
the resolving power is directly proportional to the 
order of the spectrum, holds only as lang as 
the used surface of the grating is smaller than the 
area given by Eq. (29) for the highest order under 

consideration. If, however, the grating surface is 
!arger than the area determined by Eq. (29) 
even for the first order, then 2p and therefore the 
number of lines contributing to the diffraction 
intensity are proportional to the fourth root of 
1/m. Therefore the resolution obtainable does 
not increase as 1, 2, 3, 4 · · · but according to 
m(1/m)l=mi. In the very short wave-length 
region high orders of the lines appear frequently 
and are used for wave-length determination by 
comparison with standards of Ionger wave-length 
in low orders which they overlap. This is at 
present the principal method for determination 
of wave-length in the far ultraviolet, and for 
this application, the attainable resolution in the 
high orders, may be tabulated as follows: 

Order: m = 1 2 3 4 5 6 7 8 9 10 . 
Resolving power in 1.68 2.28 2.83 3.35 3.83 4.30 4.75 5.19 5.62 
units of first order 

.In higher orders, the surface of the grating 
has to be limited to the optimum, or the resolu­
tion would be much lower.19 

From the graph in Fig. 4 it is apparent that 
Y for any given wave-length has a maximum for 
a = ß, the optical arrangement of the Eagle 
mounting. For this mounting, as noted above, 
Eq. (29a), the condition for optimum width is, 
p~ (2R3d/m·tan a)l (for a"-'ß). For short wave­
lengths, in this case A. <4000, tan a can be re­
placed in Eq. (29a) by sin a. By introducing 
Eq. (14) in the form: sina=A./2·m/d (since 
a = ß), the expression becomes, 

(33) 

This equation is useful in the choice of the 
spacing of the grooves for a grating when a 
definite radius of curvature has to be used, and 
a certain range of (short) wave-lengths in a 
certain order is to be investigated. I t is found 
from Eq. (33) that the allowed radius is pro­
portional to (d)!. The resolving power A./dA. of any 
grating is given by the number of lines N = 2pjd, 
and therefore the maximum resolution is deter-

18 Fora small wave-length range, the stigmatic mounting 
(with the spectrum on the normal) is preferable. 

19 See the photograph in the paper of Mack, Stehn, and 
Edlen (reference 16). 

mined by: 

~= 2p ~ 2 (~)!. (4R3)l, 
dA. d d m 2A. 

for A. <4000A; a"-'ß < 15°. (34) 

It follows that the maximum resolving power 
is proportional to the square root of the number 
of lines ruled per cm, other things being equal. 
An increase of NI cm by the factor of two 
enhances the attainable resolving power only by 
the factor 1.41 for short wave-length and at 
nearly normal incidence, whereas the dispersion 
is increased by the factor two, provided that the 
grating used is always large enough to reach to 
the Iimits set by the aberration. The same result 
holds approximately for grazing incidence, but 
here in addition another factor favoring the 
resolution results from the fact that higher 
orders of any particular wave-length appear 
under smaller angles, that is at "less grazing" 
incidence. 

lt may be mentioned that the intensity of the 
light coming from the grating is also 1imited by 
the aberration, since the exposed surface is p2

1r. 

The increase of the number of lines by the factor 
two therefore reduces the intensity by the factor 
two, everything eise being equal according to 
Eq. (34). But there are many other factor~ 
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ent($ring intensity questions. For very short 
waV.e-length and nearly normal incidence, the 
parts of the surface between the grooves con­
tribute most to the diffracted image. The increase 
of the number of lines goes ori largely at expense 
of the space between the grooves, and therefore 
the intensity will decrease faster than expected 
from Eq. (34). 

VII. ASTIGMATISM OF THE CONCAVE 
GRATING (GENERAL) 

One of the outstanding optical properties of 
the concave grating, distinguishing it from all 
the other optical instruments containing lenses 
or spherical mirrors, is the fact that light can be 
utilized which is incident at large angles of 
incidence. A necessary result of these Iarge angles 
is a set of imperfections in the image formation, 
of which the most striking one is astigmatism. 
The amount of astigmatism present at ]arge 
angles , is enormous. I t can be tolerated only 
because a slit is used as light source with parallel 
lines as images, and because the grating is set 
with its grooves parallel to the slit; thus the 
astigmatism is parallel to the lines. At right 
angles to the astigmatism a perfect focus can 
be maintained along the Rowland circle. 

Slit sources with line images in monochromatic 
light were uscd before the concave grating was 
inventecl. Rowlancl dicl not effect any improve­
ment in the astigmatism, but he obtained nearly 
the same optical performance given by prism 
spectrographs. The astigmatism, however re­
cluces the intensity of the spectra considerably. 
This loss was not too serious in Rowland's time 
because on ·the one hand the gratings were never 
bright in comparison to prisms, and on the other 
hand there were, in addition to the sun, enough 
very bright spectra obtainable and not yet in­
vestigated in high dispersion. A pointlight source 
on the slit is drawn out to a spectral line as 
image. For some purposes this effect is even an 
advantage. Rowland wrote: "Indeed it adds to 
the beauty of the spectra, as the horizontallines 
due to dust in the slit are never present, as the 
dust has a different focal Iength from the lines 
of the spectrum." 

Du ring the last fifty years, however, the bright 
spectra have been thoroughly investigated, while 
the increase in resolving power of the gratings 

requires narrower slits and finer grained plates, 
so that the loss in intensity by the astigmatism 
becomes a serious problem. Furthermore, the 
modern development of spectroscopy often util­
izes the length direction of the spectral lines for 
introducing another variable along this coordi­
nate. The commonest cases are the application 
of intensity marks by step wedges or sectors for 
quantitative spectrochemical analysis, or the 
interference pattern obtained by Lummer plates 
or Fabry-Perot interferometers for investigation 
of the hyperfine structure of spectral lines. All 
these types of spectroscopic problems are not 
feasible with an instrument which does not give 
a stigmatic image of the slit. For these applica­
tions prism spectrographs are still built and in 
demand. Several methods have been tried of 
eliminating the astigmatism. One arrangement 
mounts the concave grating stigmatically, but it 
Iimits the useful aperture of the grating largely 
to the region near its normal, and thus it Iimits 
the spectral range accessible in one setting. 
Other devices apply cylindrical Jenses ; their use­
fulness is limited to narrow spectral ranges too, 
or other adjustments have to be performed. 
Some devices simply try to reduce the astigma­
tism and to minimize the intensity loss, but 
without giving a truly stigmatic image. 

In general, it may be stated that the astigma­
tism is inherent in the concave mirror, which is 
the basis of the grating, as soon as the angle of 
incidence or diffraction is other than zero and 
that therefore no radical removal of it is possible, 
but only a compensation by auxiliary optical 
elements. 

As stated above, a point light source at the 
slit is imaged as a vertical spectral line, if the 
grating grooves are vertical. On the Rowland 
circle, there is no focusing along the vertical 
direction. But outside the circle, the point source 
forms a horizontal line which corresponds to a 
focus in the vertical direction and is called the 
"vertical focus." 

(a) Quantitative Treatment of Astigmatism on 
the Rowland Circle 

The directions of the light paths in the vertical 
planes that include z, z', and l at the angles a and 
ß to the normal, are governed by the members 
Fa+ Fa' of our formulas (10, 11) in first approxi-
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L 

y 

FIG. 5. Image formation for rays inclined to the 
Rowland plane. 

mation, whence: 

( 
1 cos a 1 cos ß) 

F3+F3'=!l2 ----+----
r R r' R 

(
z z') z2 z' 2 

-l -+- +-+-. 
r r' 2r 2r 

(35) 

The point light source at z, a, r can only be 
focused at some point z', ß, r', if Fermat's 
theorem (6b) is fulfilled for the vertical coordi­
nate l of the grating. Therefore: 

a(F3+Fa') 

az 
z(~- cos a +2._- cos ß) 

r R r' R 

z z' 
----=0. 

r r' 
(36) 

If any point z is tobe focused at some point z', it 
is tobe expected that if z= 0, the focus will also 
lie in the equatorial plane, that is z' = 0. Upon 
introducing this relation, Eq. (36) becomes: 

a(F3+F3') 

at 
(37) 

Since l has a finite value, the expression in the 
parenthesis must become zero, if a focus exists at 
all. The locus of the "secondary" stigmatic foci is 
therefore: 

1/r-cos a/R+1/r' -cos ß/R=O. (38) 

This condition is fulfilled symmetrically for the 
condition: 

r=R/cos a; r' =R/cos ß. (39) 

The curve representing this equation is a 
straight line, tangent to the Rowland circle at 
a = ß = 0, or through the center of curvature of 
the blank. From this, some conclusions can be 
derived that have already been pointed out by 
Sirks:20 

1. If the slit lies at the normal of the grating 
and on the Rowland circle (a=O, r=R), then 
points in the slit arenot focused as points on the 
Rowland circle; they are brought to a horizontal 
astigmatic focal line outside of the Rowland 
circle. The locus of these foci is the tangent to the 
Rowland circle at its intersection with the normal . 
of the grating. 

2. For any wave-length appearing at the nor­
mal, horizontal crosshairs in the incident beam 
will be focused sharply if they lie on the tangent 
to the Rowland circle at the normal.21 

The focal properties of the grating for rays that 
are inclined to the horizontal Rowland plane can 
be visualized as follows: points lying on the 
tangent to the Rowland circle through the normal 
are imaged into other points of the same tangent. · 
In Fig. 5, this behavior is represented. The 
vertical direction of the grating extends along L. 
The light beams from focus to focus lie inside a 
tetrahedron, one edge of which is a vertical 
groove of the gra ting, and the other edge the 
focalline, the "normal tangent" of the Rowland 
circle. For comparison, the focusing of points on 
the Rowland circle is represented in Fig. 6. Rays 
diverging from points on the Rowland circle, that 
are reflected from points along the horizontal ex­
tension w of the grating, form images at other 
points of the Rowland circle. The family of the 
light beams from focus to focus forms a circular 
horizontal disk. All the points of the circle in 
Fig. 6 lie inside the straight line of Fig. 5. The 

20 J. L. Sirks, Astron. and Astrophys. 13, 763 (1894). 
21 It may be emphasized, that these conditions are only 

fulfilled for the spectral lines appearing at the normal. 
Sirks treated only this case, because at that time no other 
than the Rowland mounting was known. For spectrallines 
appearing far away from the normal, the construction of a 
tangent does not Iead to the outside focus for horizontal 
lines, as is sometimes erroneously stated. In Fig. 8, the 
distances of those foci outside of the slit are represented in 
a diagram. 
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FIG. 6. Image formation in the Rowland plane. 

conception of astigmatism refers to the fact that 
there are two distinct focal curves. Since a 
generalquantitative measure for the astigmatism 
has not been established, the difference of the two 
focal points at any given angle or the ratio of 
these lengths or any other well defined property 
may be used for its measurement. 

The comparison of Fig. 5 with Fig. 6 makes it 
evident that on the Rowland circle a stigmatic 
image is formed only if the source and the image 
are located at the normal. The astigmatism 
remains negligible for points near to the normal, 
that is for a and ß smaller than about 3°. Using 
gratings with 15,000 lines/inch, this region con­
tains the wavc-lengths up to 2000A. 

Equations (38) and (39) do not contain A. or d; 
the astigmatism is a function only of the angles of 
incidence and diffraction. 

Equation (38) can also be fulfilled asym­
metrically by the condition: 

(40) 

This property has been utilized by vVadsworth 
in his so-called stigmatic mounting which is 
treated later (Section XI). 

The amount of astigmatism at any Rowland 
circle mounting may be very considerable, cle­
pending on a and ß. For a point source at the 
circle, the conjugate vertical focus of some wave­
length may fall at infinity, and it is even possible 
that divergent light with respect to l emerges 
from the grating. vVe can study this relation by 
introducing into Eq. (38) the condition that the 

source lies on the circle r = R cos a, which gives: 

1 cos a 1 cos ß 
+---=0. (41) 

R cos a R r' R 

The conclition for emergence of parallel light is 
that r' becomes infinite, and therefore 1/r' = 0; 
the equation reduces to: 

1 cos a cos ß 

R cos a R R 
or 

sin 2 a 
cos ß=--=sin a·tan a. (42) 

cos a 

This means that for a considerable range of a, 
parallellight will emerge at a certain angle ß. For 
small angles of incidence a, the light will be 
parallel at large angles ß; for larger angles a, ß for 
parallel light decreases rapidly. For a=45°, 
parallellight emerges at ß=45°, and for a=52°, 
the light ernerging normal to the grating is 
parallel. 

The light ernerging from the grating is con­
vergent if r' is positive; it is divergent if r' be­
comes negative. By replacing 1/r', in Eq. (41), by 
small positive or negative values the following 
additional relations are obtained: 

if cos ß>sin a·tan a, 

the emergent light is convergent in vertical plane; 

if cos ß=sin a·tan a, 

the emergent light is parallel in vertical plane; 

if cos ß<sin a·tan a, 

the emergent light is divergent in vertical plane. 

(b) Quantitative Evaluation of the Magnitude 
of Astigmatism 

In orcler to calculate the quantitative influence 
of the astigmatism on the image formation at the 
Rowland circle, the values R cos a and R cos ß 
(Eq. (17)) for r and r' are introduced into Eq. 
(36). Thence: 

( 
1 cosa+ 1 coRsß) 

l R·cos a R R·cos ß 

z z' 
--=0. (43) 

R·cos a R·cos ß 
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FIG. 7. Astigma­
tism in units of the 
Iength of the gra t­
ing grooves for a 
poin t source a t the 
slit for all angles of 
incidence and dif­
fraction. 

By transformation: 

(
sin2 a sin2 ß) z z' 

l cos a + cos ß - cos a- cos ß = O. 
(44) 

This equation connects the lengths of source 
and of image with the lengths of the rulings. I t 
should be noted that the equation does not con­
tain R in any power; the astigmatism is therefore 
independent of the size of the Rowland circle 
mounting; it has already been shown tobe inde­
pendent of the grating constant and of the order 
of the spectrum. The length of the images that 
are formed by a pointlight sou'rce at the slit may 
be found by setting z = 0 in Eq. ( 44). Whence: 

( 
cosß) 

z' =l sin2 ß+sin2 a·-- . 
cos a 

(45) 

The numerical evaluation of this formula for 
some particular angles a has been published by 
Diek~.22 A knowledge of the numerical values is 
frequently wanted, especially when a new grating 
is tobe mounted, for which the optimumangle of 
incidence for some purpose is tobe chosen. There­
fore the complete set has been calculated for all 
the possible values of a and ß. The results are 
represented in Fig. 7, where the coordinates are 

22 G. H. Dieke, J. Opt. Soc. Am. 23, 274 (1933). 

Angle of diffraction 

again the angles of incidence and diffraction. The 
curves connect the points for which the angular 
function r, 

r=sin2 ß+sin2 a· (cos ß/cos a) =z' /l, (46) -

has the same value; they could be called "iso­
astigmats." The numerical values of rare desig­
nated ; they mean therefore the ratios z' /l for a 
pointlight source, i.e., the lengths z' of its images 
measured in the unit of length l of the grooves of 
the grating. The curve 1.0 represents the emer­
gence of parallel light, which has been discussed 
above qualitatively (Eq. ( 42)). Inside this curve 
convergent light emerges, and outside of it, 
divergent light. The dashed curves indicate the 
wave-lengths for a grating with 30,000 lines/inch, 
as in Fig. 2. 

The su perposi tion of these two sets of curves 
allows one to select the arrangement of slit and 
plate for any desired wave-lengths-which corre­
sponds to a minimum of astigmatism. The curve 
in Fig. 7 drawn by points and dashes -·-·-· 
represents the angles to be chosen if a minimum 
of astigmatism for a particular wave-length is 
desired. I t will be seen that the Eagle mounting 
(a"'-'ß) covers the range of minimum astigmatism 
-a fact already stressed by Eagle23-for angles 

23 A. Eagle, Astrophys. ]. 31, 120 (1910). 
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up to approximately 35°. For Ionger wave-lengths, 
whose numerical values depend on the grating 
constant d, it is advantageaus to work at a con­
stant angle of incidence of about 35°, until the 
angle of diffraction ß becomes very large. Values 
for ß !arger than about 7 5° are unfavorable24 be­
cause the adjustment becomes more difficult and 
the coma becomes too large. I t is then better to 
increase the angle a again to reach the range of 
Ionger waves. 

The astigmatism for the Iongest wave-lengths 
accessible by a given grating is smaller the nearer 
ß is chosen to 90°. If an Eagle mounting is con­
structed to be used in the range of long waves, or 
high orders of short waves, and small astigma­
tism is wanted, the angle of incidence should be 
chosen smaller than the angle of diffraction, i.e., 
the slit should be beyond that edge of the plate­
holder which is nearer to the nor!T!al of the 
grating. (It will be shown that the attain­
ment of high resolving power favors the opposite 
arrangement of slit and plate.) (See part c of 
Section VIII.) 

Comparison with Fig. 2 shows that the Rowland 
_ and the Abney mounting of the concave grating 
cover ranges of the angles which are quite 
unfavorable with respect to astigmatism. With a 
30,000 lines/inch grating, at 8000A ( = 2nd-order 
4000A), the spectral I in es are already three tim es 
as long as the grooves of the grating, and the 
intensity is thus considerably reduced. It has 
been proposed to use a very long slit to compen­
~ate for this loss, but as discussed in the section 
on coma the spectral Iines will be imaged very 
poorly in this case. With the Runge-Paschen 
mounting the astigmatism may be kept within 
tolerable Iimits. The usual arrangement with an 
angle of incidence about 45° produces spectral 
lines of nearly uniform astigmatism (r = 0. 72 to 

24 In some treatments the reason given for avoiding large 
angles is that then the angular aperture of the grating 
becomes very small. This is not the case however because 
the width of the grating can be approximated very weil by 
a chord an the Rowland circle, and the angle subtended at 
any point of a circle by the two end points of a chord is 
strictly constan t. This geometrical property can in fact be 
used for derivation of the Rowland circle·as focal curve of 
a concave grating. On the other hand, the aperture with 
respect to the length l of the grating gets much larger with 
increasing angles, as 1/cos a or 1/cos ß respectively.-This 
conclusion, however, holds only as long as the aperture of 
the grating is limited by its own size, not by the aberration. 
(See Section X.) 

1.2) all around the circle. I t seems feasible to use 
a second entrance slit at a about 20° for work at 
medium wave-lengths, in order to utilize the 
smaller astigmatism in this region. 

For the concave grating in grazing incidence a 
very large astigmatism is always present. But 
here, a compensation for the intensity loss occurs: 
at grazing incidence, the reflectivity of polished 
surfaces for short waves is much !arger than at 
normal incidence. Furthermore, the higher dis­
persion obtainable by this mounting is generally 
the most important factor in the range of very 
short waves. 

(c) The Secondary Focal Curves 

From the general Eq. (38) it was shown that 
any point on the tangent to the normal of the 
Rowland circle is focused "vertically" at some 
other point ofthat tangent. It is also important 
to know where pointlight sources must be located 
in orqer to give a point image in "vertical focus" 
on the Rowland circle. 

The locus r V for such light sources is obtained 
by introducing r'=R·cos ß into Eq. (38). 

1 cos a 1 
-=--+--­
r R R·cosß 

cosß 
=0; 

R 

1 cos a+cos ß 1 

rv R R·cos ß 

1 
rv = R ·--------

cos a-sin ß·tan ß 

(47) 

(48) 

For any angle of diffraction ß and incidence a, 

there is a certain distance rv from a grating, at 
which a pointlight source must be located tobe 
imaged as a horizontal line on photographic 
plates that are placed on the Rowland circle. If 
then the incident light passes through the slit, 
monochromatic images of the slit are obtained, 
but the length of the slit is reduced to a point on 
the plate. 

In practice, the distance of the point light 
source from the gratingisnot so important as its 
distance from the slit, since that is the part of the 
grating spectrograph easily accessible from the 
outside. For calculating this distance,s, the 
distance between slit and grating is subtracted 
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FIG. 8. Distance of vertical focus before ( +) or behind (-) the slit in units of grating radius R for all angles 
of incidence and diffraction. 

from r v, giving: 

( 
1 

s=rv-r=R 
cos a-sin ß tan ß 

cos a) 
=R·A. (49) 

The angular part of this function, A=s/R, has 
been plotted in a graph, represented in Fig. 8. In 
view of the practical importance of this function, 
the values are given in small steps. The curves 
connect the points with equal A, i.e., the values 
of the distances s measured in units of the radius 
of curvature of the grating blank. Inspection 
shows that for the normal (a=ß=O) s=O, and 
that s rises rapidly to unity for increasing angles, 
and to infinity for a = 45°, ß = 45°. In this region 
then, parallel light striking the slit and the 
grating will be focused as a point on the Rowland 
circle. Proceeding to !arger angles, the grating 
must be illuminated with convergent light to give 
a focus (vertically) at the circle; the amount of 
convergence is given by a negative figure for A 
which designates the position of the focus meas­
ured in units of R from the slit towards the 
grating. 

Of course it is not necessary to put the actual 
light source at the distance A = s/ R; it is sufficient 
to create a virtual image there by means of a 
spherical or better a cylindro-convex or concave 
lens. 

In reality, alllight sources are of finite size, and 
therefore the grating will produce a certain 
magnification of the image. If the height of the 
light source (or its virtual image) in the outside 
focus is designated by Zv, then the height z' of the 
spectral line at the Rowland circle will be given 
by simple geometry and by use of Eq. (44) as: 

r' 
Z1 =zv·-=Zv·COS ß(cos a-sin ß tan ß) 

rv 

=zv(cos a · cos ß-sin2 ß). 

(50) 

The value of the angular function is always 
smaller than unity, (it is equal to unity for 
a=ß=O). The consideration of Eq. (50) is 
necessary for the choice of a cylindrical lens, 
placed between the slit and the source, to correct 
the astigmatism. The decision depends of course 
on the size of the light source and on the angles a 
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FIG. 9. Illumination of the image formed by a 

concave grating. 

and ß which must be used to photograph the 
desired wave-Iengths with the given apparatus. 

Considerations of this kind may become more 
complicated, if the maximum resolving power is 
wanted. The occurrence of the coma Emits the 
Iength of the slit and of the grating grooves that 
may be illuminatecl. These restrictions will be 
referred to later. (See Section VIII.) 

(d) The Intensity Distribution Along the Spectral 
Lines as a Result of the Astigmatism 

If a light source of the Iength z is used at thc 
slit, Eq. (44) can be written as: 

( 
cos ß) cos ß 

z'=l sin2 ß+sin2 a·-- -z·--, 
cos a cos a 

(51) 

in order to represent the length of the image. 
z and z' have opposite signs, corresponding to 
the inversion of the slit image by the reflection 
at the grating. For l, the sign of the coordinates 
must be introduced too. The relations are some­
what complicated, but must be considered be­
cause it has been proposed to use the astigmatism 
for quantitative intensity measurements.25 This 
procedure may be feasible, if the necessary 
precautions are taken. 

The geometry of the vertical sections through 
the sheet of light that is defined by slit, grooves, 
and spectral Iine is represen ted in Fig. 9. The 
relations are the same as for a cylindrical Jens, 
or, since only one plane section through the 
beams is consiclerecl, as for a spherical Jens. I t is 

assumed that convergent light emerges from the 
grating, represented by l in Fig. 9. 

The light beam originates in z (now designating 
the fulllength of the slit) and is focused by l at a 
distance rv' as a line of length zv'. The peculiarity 
in this arrangement of the grating is that the 
light beam is not intercepted by a screen at the 
focal distance, but much nearer at the clistance 
rr', i.e., at the Rowland circle. From Fig. 9 it 
can be seen that the light sheet between l and 
zv' contains two triangular parts with their bases 
in l and in zv' ancl a common vertex at C. All the 
points within these triangles receive light from 
all the points of z, whereas points lying in the 
remaining two triangles shown receive light only 
from parts of z. The light sheet ernerging from l 
can therefore be divicled into two parts: a fully 
illuminated ancl a partly illuminated one, and a 
screen inserted at some distance r1', or r2' closer 
to l than r v' will show these two parts distinctly. 
In Fig. 10 is given a graph of the intensity dis­
tribution along z1', which is chosen as abscissa. 
Over a central part T 1T 1', there is a uniform 
maximum intensity, but this decreases Iinearly 
toward the outer parts of the sheet of light, until 
i ts boundaries are reachcd a t S 1 and S 1'. The 
linearity of the decrease can be derived easlly by 
construction of light beams from points along z. 

It may be remarked here that this theoretical 
linearity can be used for the reduction of the 
density on the photographic plate, in the same 
manner that a wedge is used in photometric 
work for printing intensity marks. These cali­
brating marks may be used in comparing the 
intensity of not too distant spectral Iines with 
each other. 

The Iengths of T1T1' ancl S1S1' can be readily 
calculated. For the general case, two possible 
positions of the screen at r1' and at r 2' are con­
sidered; viz. inside and outside of the crossing 
point C, whose position depends not only on r 
and rv' but also on the magnitudes of z and l. 

From simple geometry, the following propor­
tians can be clerivecl : 

T2T2': l=a2:a; a:b=l :z/; (S1S1'-zv'):(b-a1)=(l-z~,'):rv'; a1=r1'-a 
T1T1':zv'=a1:b; z:r=zv':rv'; (S2S2'-zv'):(b-a2)=(l-zv'):rv'; a2=b-r2' 

a+b=rv' 

25 G. H. Dieke, J. Opt. Soc. Am. 23, 280 (1933); Sister M. I. Bresch, J. Opt. Soc. Am. 28, 493 (1938). 
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INTENS!TY the indices : 

r ( 
cos ß) cos a 

TT'=l sin2 ß+sin2 a·-- -z---; 
cos a cos ß 

(53) 

( 
cos ß) cos a 

SS'=l sin2 ß+sin2 a·-- +z·-~. 
cos a cos ß 

~--------- ~ ----------~ 

FIG. 10. Intensity distribution in grating line-image. The value TT' designates the central part of 
the astigmatic image, which has uniform in­
tensity; the length SS', however, designates the 
full lengths of the astigmatic image z' at the 
Rowland circle. This function has been evaluated 
for l= 75 mm and z' =5 mm. The values calcu­
lated for the necessary slit lengths are plotted in 
Fig. 11 with the coordinates a and ß, and for 
easier orientation the wave-length ''isochromats'' 
with X values for first order of a 30,000 lines/inch 
grating have been plotted by dashed lines. In 
evaluation of this formula, Fig. 9 has been con­
sidered. The construction must be reversed to 
give z for a given r' and z' (TT' with maximum 
intensity = 5 mm). It is found that two different 
slit Iengths are possible according to the choice 
of r' between the Iens and the crossing point or 
outside of that distance. Two different slit 
Iengths result, of which the shorter one has been 
used in plotting the graph. 

From the grating equations, by solving Eq. 
(38) for r=R cos a, there follows: 

R 
rv' 

cos ß-sin a· tan a 

r1' =R·cos ß1; 

r2'=R·cosß2-

By combination of these equations and sub­
stitution: 

and 

1 
zv' =z·--------­

cos a · cos ß 1, 2- si n 2 a 

, 
r1, 2 ( . ) -=cos ß cos ß-sm a·tan a . 
rv' 

(52) 

The final results yield expressions that show 
T1T1' = T2T2' and S1S1' = S2S2', so that omitting 

Astigmatism · 
Length of slit necessary to give spectral lines with maximum infensify over 5mm length.Rulings,75mm long 
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FIG. 11. Length of illuminated sl.it necessary to give spectral lines of maximum intensity of 5-mm 
length for all angles of incidence and diffraction of a grating with rulings 75 mm long. 
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I t is of course not feasible to use slits of the 
extreme length that is given in millimeters on 
the graph. The coma then occurring is prohibi­
tive, if even a moderate resolution is desired. 
There are other means for reducing the intensity 
loss from astigmatism by auxiliary optical devices. 

VIII. COMA 

In the series development the members (10c) 
and (11c) contain l, but not w. They represent 
therefore an aberration that is restricted to the 
planes containing z and l, or z' and l, respectively. 
The spectral lines, therefore, remain strictly 
straight lines. 

A simple geometrical consideration, however, 
shows that this statement is only an approxi­
mation. If any point of the slit is connected with 
the points along one groove of the grating, then 
this triangular beam of light will be a plane sheet 
only for the case a = 0; otherwise it will be curved. 
In fact, it will be part of a surface of an oblique 
circular cone. The same relations hold for the 
cliffracted sheet of light, which will be plane only 
for ß = 0, and otherwise will be part of a surface 
of an oblique circular cone, the top of which lies 
on the secondary focal curve. A consideration of 
the astigmatic elongation procluced on the 
Rowland cylinder by this system of curved sheets 
shows that a curvature of ~he spectrallines must 
appear. Furthermore, as soon as a slit Ionger than 
a point is used, a one-sided shading of the line 
will result which corresponds to the aberration 
which in lenses is designatecl as coma. This effect 
widens the spectral lines, even at z' = 0, and 
damages the resolving power. The coma must 
therefore be restricted in its magnitude, and from 
simple geometry it is evident that a Iimitation of 
the length of the slit and of the rulings is required. 
The calculation of the permissible values from 
geometrical considerations is, however, rather 
cumbersome and difficult. By means of the series 
development of the generalized theory, however, 
these evaluations can be carried on readily with 
a good degree of approximation. The series de­
velopment was in fact originally introduced for 
this calculation of coma ancl curvature, since the 
geometrical treatmentwas too laborious. 

In the series development of the general 
formula (9), the coma ancl the curvature of the 
soectral lines are governed by the terms (10d) 

and (11cl) that contain the cross proclucts w ·l2. 
The partial derivatives of (10cl) and (11d) with 
respect to l arenot important, because they con­
tribute only small cleviations in the direction z'­
they increase or clecrease the already present 
astigmatism by a small fraction, yielding insig­
nificant corrections to the formulas developed in 
the prececling section. However, the partial 
derivatives with respect to w give contributions 
in the direction of the dispersion on the plate, ancl 
they must be evaluated. 

The expression of formula (10d + 11cl) 1s as 
follows: 

F,+F/=!w·lfi: "(~+ co; ") 
sin ß( 1 cos ß)] w·sin a +-- ---- + (z2-2lz) 

r' r' R 2r2 

w·sin ß 
+ (z' 2-2lz'). (54) 

2r'2 

The introduction of the values for the Rowland 
circle from Eq. (17) to eliminate r, gives 

w·l2(sin3 
a sin3 ß) 

F4+F/=-- ---+--
2R2 cos2 a cos2 ß 

w ·l ( sin a , sin ß ) 
-- z·--+z ·--

R2 cos2 a cos2 ß 

w ( sin a sin ß ) +- z2·--+z'2. __ . 
2R2 cos2 a cos2 ß 

(55) 

The values for l, z and z' arenot inclepenclent of 
each other, bu t are connected by the earlier 
formula (51) for the astigmatism, by which any 
one of the three can be eliminatecl. The elimina­
tion of z is equivalent to an assumption that the 
slit is indefinitely long, its effective length being 
cleterminecl by the light rays which pass it ancl 
which strike the grating within the length l of the 
groove in such manner that diffractecllight arrives 
at the focal curve within the height z'. Since z' 
and l remain in the equation, this application of 
Eq. (51) may be called the case of an indefinitely 
lang slit, but with fixed values of land z'. 

(a) The Case of a Long Slit 

To carry out the elimination of z, Eq. (51) must 
be evaluatecl for z, ancl this expression introclucecl 
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into Eq. (55), where z appears in the second term 
and z2 in the third one inside the parentheses on 
the right-hand side. Since these substitutions 
become quite lengthy, they will be carried out 
successively for the individual members. The . 
second term of Eq. (55) is transformed by intro­
ducing Eq. (51), as follows: 

_ w·l2(~in 3 a + sin
2 

ß·sin a) 
R 2 cos2 a cos ß·cos a 

w·l sm a w·l sin ß 
+-·z'·----- ·z'·--

R2 cos a·cos ß R2 cos2 ß 

_ w·l2(sin 3 a sin 2 ß·sin a) - --- ---+---
R2 cos2 a cos ß · cos a 

w ·l ( sin a sin ß ) 
+-·z'· 

R 2 cos a · cos ß cos2 ß . 
(56) 

Into the third member of Eq. (55) z2 as calcu­
lated from Eq. (51) is introduced. The result is 
the following expression: 

w ( sin a sin ß) - z2·---+z'2 __ 
2R2 cos2 a cos ß 

w ( sin 5 a sin 3 a · sin 2 ß 
=-·[2. --+2----

2R2 cos2 a cos a · cos ß 

sin a · sin 4 ß) 
+ +···+···. 

cos2 ß 
(57) 

The plus signs at the right end of (57) indicate 
that members in z' and z'2 have been omitted. 
This simplification in effect restricts the con­
sideration to the coma in the Rowland plane only, 
because then z' becomes equal to zero. Omitting 
therefore a11 the members with z' and z'2 and 
introducing (56) and (57) into (55), the result is 
as follows: 

w ·P ( sin 3 
a sin 3 ß) 

F4+F4'=-- ---+--
2R2 cos2 a cos2 ß 

w·l2 
( sin3 a sin2 ß sin a) 

--· 2·--+2----
2R2 cos2 a cos ß · cos a 

w·l2(sin5 a sin3 a sin2 ß 
+- --+2----

2R2 cos2 a cos a · cos ß 

sin a·sin 4 ß) + . 
cos2 ß 

(58) 

After appropriate transformation and combina­
tion of the trigonometric functions, this expres­
sion becomes : 

W·l 2 

F4+F/ =--( -sin3 a+sin ß·tan2 ß 
2R2 

+sin a · sin2 ß · tan2 ß 

-sin 2a·sin ß·tan ß). (59) 

The introduction of Eq. (51) into the computa­
tion involves a restriction in the slit length z, 
because points z' on the plate receive from a 
grating with ruled grooves of the length l only the 
light that originated over a certain range of z at 
the slit. This restriction is still effective for z' = 0, 
the Rowland plane. The Eq. (59) expresses the 
fact that a Iimitation of F4+F/ requires a 
Iimitation of l, whereby the permissible illumina­
tion of the slit becomes, indirectly, more 
restricted. 

The partial derivative a(F4+ F4') I aw clesig­
nates the angles by which the rays from points 
along w deviate from the true directions towards 
the focus B. These angles are projected onto the 
plate as length cleviations 11Pc in the clirection of 
dispersion. The values 11Pc can be calculated as 
follows: 

a(F4+ F/) 1 
11Pc ·R·cos ß·--

aw cos ß 

a(F4+F/) 
=R· (60) 

aw 

where R · cos ß is the distance of the focus B from 
the grating, ancl 1/cos ß takes care of the angle ß 
of oblique inciclence on the plate. The combina­
tion of Eqs. (59) and (60) yields the final formula: 

a(F4+F4') 
11Pc= ·R 

aw 

[2 

=-( -sin3 a+sin ß tan 2 ß 
2R 

+sin a·sin2 ß tan2 ß-sin 2a·sin ß·tan ß). (61) 

The angular part of this function has been 
evaluatecl for the whole range of a and ß. For the 
use in practice, however, Eq. (61) is not the most 
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convenient, because usually the requirement is 
not to calculate the amount of coma present, but 
rather the maximum length of the rulings that 
can be used for a particular resolving power 
within the limits imposed by the amount of 
coma. The resolving power desired depends of 
course on the problern at band. Even the highest 
resolution, however, permits a value of 11Pc of 
one-third of the diffraction width of the lines,­
an amount that reduces the theoretical resolving 
power by only 8 percent. The value of 11Pc can be 
determined in cm for the requirements of any 
problem, by considering the desired Iine-width 
and resolution at the plate. The question as to the 
Iength of the grooves that can be utilized is then 
answered by the equation : 

(62) 

where v ts definecl by Eqs. (61) and (62), as 
follows: 

1 
-= ( -sin3 a+sin ß·tan2 ß 
v2 

+sin a·sin2 ß·tan2 ß 

-sin 2a·sin ß·tan ß). (63) 

The angular function v has been evaluated 
numerically and is represented in Fig. 12 for all 
values of a and ß. For practical use, it is only 
necessary to multiply the numbers in the diagram 
by (2R·~Pc)!; the product then represents the 
permissible length of the rulings l as measurecl 
from the "equator" of the grating. 

An example will illustrate this calculation. The 
question may be asked, for what wave-length 
range a 30,000 line grating with 15.0X7.5 cm 
ruled surface and 30 foot radius of curvature can 
be used with full aperture and an angle of inci­
dence of 20°, if the slit is long. The evaluation of 
the diffraction width D.p of the spectral Iines in 
the region of ß = 30° yields D.p = 0.025 mm (inde­
pendent of the order); therefore ~Pc can have any 
value up to ! of this value or to ~Pc = 0.008 mm. 
The numerical factor is determined by the follow­
ing expression : 

(L\Pc · 2R)i = (8 ·10-4 • 2 · 914)3 

= (1.46)!= 1.21 cm. (64) 

The allowed Iength and the function v are limited 
as follows: 

l~1.21v; 
l 

v);--. 
1.21 

In this equation, the grooves are measured from 
the equator; that means for the grating chosen 
l=3.75 cm, and consequently v);3.10. In the 
diagram Fig. 12 the values of v for the present 
case are found along the straight line for a= 20°. 
I t is obvious that v is !arger than 3.10 for the 
values of ß corresponding to first-order wave­
lengths from 500 to 7900A. Within this range of 
ß, the grating may be used ·at its full height. 
Outside of this range, the length of the rulings 
must be decreasecl, lest the resolving power be 
damaged. 

(b) The Coma for a Short Slit 

In many cases it is clesirable and possible to 
use a long slit, in orcler to counteract the- loss in 
illumination on the plate caused by the astigma­
tism. In other cases, it is not advantageaus to 
illuminate such a long segment of the slit and 
on the other hand the length of the rulings may 
increase the illumination also. Therefore, the 
coma in its dependence on the length of the sli t 
will be evaluated. I t can be shown that fre­
quently the illuminated segment of the slit is 
too short to justify the application of the for­
mulas of the preceding section. 

The evaluation for this case means mathe­
matically that not z, but l must be eliminated 
from Eq. (55) by means of Eq. (51). The rulings 
are now considered to be indefinitely long, but 

· only that length l, which is determined by Eq. 
(51), contributes to the image formation at z', 
caused by light at z. The expression for l is as 
follows: 

z z' 
-+-
cos a cos.ß 

sin2 a sin2 ß 
(65) 

--+-
cos a cos ß 

The introduction of Eq. (65) into Eq. (44) 
yields an expression for (F4+F4'), which can be 
simplified if only points in the Rowland planP 
(z' = 0) are considered, and the attempt is not 
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made to calculate coma for points z' that are 
away from the equatorial plane. Omitting the 
stepwise introduction of Eq. (65) into Eq. (55), 
as was carried out in the Eqs. (56) and (57), 
the final equation for the Rowland plane with 
z' =0, is: 

w 1 
F4+F4'=-·z2·---------

Or 

2R2 (sin2a sin2ß) 2 
cos2 a --+--

cos a cos ß 

(
sin3 a sin3 ß) 

X --+--
cos2 a cos2 ß 

sm a l 
cos2 a sin a 

-2· +-- . (66) 

(
sin2 a sin2 ß) cos2 a 

cosa --+-- j 
cos a cos ß 

w·z2 

2R2 (sin2 a+sin2 ß cos a)
2 

cosß 

X (- sin 3 a + sin ß · tan 2 ß 
+ sin a · sin 2 ß · tan 2 ß- sin 2a · sin ß · tan ß). ( 6 7) 

The angular function in the denominator is the 
square of the expression that occurs in the 
formulae (45), (51) for the astigmatism. By Eq. 
( 46), it has been defined as r. The sum in the pa­
renthesis in the numerator is the expression v of 
Eqs. (59) and (63) for the coma. In order to 
calculate the deviation f:..Ps, that is caused by the 
members (F4+ F4') at the plate in the direction of 
the dispersion, the same reasoning that yielded 
the Eq. ( 60) may be applied with the following 
result: 

a(F4+ F/) z2 1 1 
----·R=-·-·-. 

aw 2R r 2 v2 
(68) 

The significance of this equation is, that the 
length of the slit must be limited in order to 
reduce the width of the coma to a value that 
does not darnage the resolution at z' = 0, if the 
grooves of the grating are "very long ;" that is 
long enough to receive all the light coming from 
the slit along z that contributes to the image at 
z' = 0. For practical use, the question is frequently 
asked as to how long a slit is allowable for a 
permissible amount f:..Ps of coma. In analogy to 
the transformation in the preceding section, the 
result is as follows: 

z:;( (2R·f:..Ps)!·r·v. (69) 

The angular function r. V has been calculated 

Coma 
The allowed length of the grooves for the coma Ac at z'=O 

FIG. 12. Alluwed 
length of grooves 
for coma tJ.pc in 
units of (2R·!J.Pc)! 
for all angles of in­
cidence and diffrac­
tion. 

can be calculated by l::yAc·2R 7,7 being represented in the graph. 
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for the whole range of a and ß, and it is repre­
sented by the diagram in Fig. 13, in which the 
numbers indicate its numerical values. For prac­
tical application, it is necessary to assign a value 
to the permissible amount of coma. This value 
may be determined by the resolving power in 
the case of large circle mountings, or by the plate 
grain in the case of shorter focus, or by the 
maximum allowable line width for photometry 
or other purposes. The introduction of D.Ps and R, 
and of the value r · v for the angles a and ß into 
Eq. ( 69) yields the permissible length of the slit, 
measured from its center, z= 0. The positive or 
negative signs of the original angular function in 
Eq. (67) are not given in the diagram-they 
mean that the coma extends to one or to the 
other side of the spectral lines. 

( c) General Conclusions Regarding Coma 

The question arises, which of the limitations, 
sli t length or length of the rulings, must be 
applied to any special case? The answer is very 
simply given by the method of the derivation, 
which in both cases assumed the other variable 
to be indefinitely extended. If from the diagram 
Fig. 12 it is found that the exposed grooves of 
the gratingare not too long, then it is not neces­
sary lo restriet the length of the illumination at 
the slit. If, on the other hand, the slit length is 
restricted tothat allowecl by Eq. (69) ancl Fig. 13, 

<( 
0 
0 
0 
:f 

FIG. 13. Allowed 
length of slit for 
coma tlps in units 
of (2R·tlps)~ for all 
angles of incidence 
and diffraction. 

then no limitations are placed on the Iength of 
the rulings. If, however, both slit and rulings in 
the experimental conditions are Ionger than is 
permissible, the best compromise seems to be to 
reduce both lengths until they yield the same 
amount of coma. A more precise method, of 
course, is the evaluation of Eq. (55) for the 
chosen values of l and z, setting z' = 0. lf the 
range of a and ß for which a knowledge of the 
coma is wanted, is not too !arge, the work of 
calculation is not extensive. The partial deriva­
tive of (F4+F4') then yields the coma, according 
to Eq. (60). 

N umerical calculation of the coma at values 
z' = 0 is, however, rather complicated, if it has 
to be carried out over !arger ranges of a and ß. 
However, it is possible to approximate this 
problern by the cliagrams for the curvature of 
the spectral lines as given in the next section. 
There is no simple general rule for the increase 
or clecrease of the coma if z' increases; of course, 
the coma is symmetrical with respect to +z' ancl 
-z'. For the angular regions of large astigma­
tism, the coma usually has a maximum at z' = 0; 
for regions of small astigmatism, it has its 
minimum there. 

The Iimitation of the length of the rulings of 
coursc rcduccs thc used apertm·e ancl thcrcby 
the intensity of the grating. Increasing the 
length of the slit, an operation that has some-
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times been recommended as a remedy against the 
intensity loss caused by the astigmatism, is also 
limited by coma. Coma can be partially reduced 
by using a curved slit, but a change of the curva­
ture with change of the angles a and ß is required. 

The diagrams show the ranges for which the 
coma is least disturbing. The Rowland and 
Abney mountings are not favorable for long 
grooves. The Paschen-Runge mounting is good, 
if the angle of incidence is not the usual one of 
approximately 45°, but only half of its value or 
less. The Eagle mounting is very good. Since for 
small angles the coma is always not too dis­
turbing, there is only a slight preference for the 
alternative of placing the slit on the side of the 
plateholder that is nearer the normal. For larger 
angles and wave-lengths, however, a great ad­
vantc!,ge is gained by using the slit on the side of 
the plateholder away from the normal, or with 
a larger than ß. 

IX. THE CURVATURE OF THE SPECTRAL LINES 

As already mentioned in the .introductory re­
marks of the last section, the rulings of the 
gratingare seen as curves from a point at the slit, 
whenever the angle of incidence is larger than 
zero. Conversely, the grooves appear curved from 
any point on the plate holder except for ß = 0. 
The simple geometrical reflection of light from 
a point source A at a set of rul~ngs therefore 
produces a curved sheet of light. Before this 
sheet converges to the secondary focus, it is 
intercepted by the cylindrical plateholder. The 
same holds for diffracted light of any wave­
length. The line of intersection-the spectral 
line--is therefore curved. These curved spectral 
lines, are the astigmatic images of a point source 
at the slit. Therefore this curvature will be 
called the astigmatic curvature. 

In addition to this curvature, there isanother 
kind of curvature in the spectral lines, that is 
caused by the finite length of the slit. The vertices 
of the astigmatic images, correspond to a point 
source at the slit, with z= 0. If the point source 
is moved along the slit, then the vertex of this 
"parabola" will describe a curved line or envelope 
which must also be investigated. This curvature 
is quite different from the astigmatic curvature; 
it may even be concave to the opposite side. 
This enveloping curvature will be treated in a 

separate section. The two effects must be added 
to ev~luate the complete curvature. 

(a) The Astigmatic Curvature 

The astigmatic curvature of the spectral lines 
arises from the cross products containing wand l 
in the general series development of Eqs. (10) 
and (11). The largest members of this type are 
F4 and F4', the next ones are Fs and Fs'. The 
analytic expression for any curvature must con­
tain the dependence of the angle ß on the coordi­
nate z', which is the distance along the spectral 
line measured frorn. the Rowland plane z' = 0. 
The dependence of ß on z' means that the partial 
derivative a(F4 + Fi) / aw assumesdifferent values 
with varying z', since that partial derivative 
designates the differences dß between the actual 
directions of the normals to the wave fronts and 
the direction towards B (Fig. 1), and, if we con­
sider the astigmatism arising from a(Fa+Fa')jal, 
towards the points along the vertical through B, 
these all have the sameangle ß. 

If any partial derivative a (F n + F n') I aw should 
contain an odd power of z', an inclination of the 
spectral line would result. The dependence on 
(z') 2 however yields a curved line, in general a 
parabola. The angles dß are projected onto the 
Rowland cylinder as distances 11P according to 
the Eq. (60) used earlier. 

1 a(F4+F4') 
i1p=dß·R·cos ß·--=R· (60) 

cos ß aw 

The difference between the evaluation of the 
Eq. (60) for coma and of that for curvature 
consist in the different choice of the independent 
variables in F4+Fi. For the coma, it was 
assumed that z' = 0; now the same equation is 
evaluated for variable values of z', with z re­
stricted to the value zero. 

The starting point is Eq. (55) for the Rowlancl 
circle, 

w ·l2 
( sin 3 

a sin 3 ß) 
F4+F/=-- ---+--

2R2 cos2 a cos2 ß 

w ·l ( sin a sin ß ) 
-- z·--+z'·--

R2 cos2 a cos2 ß 

w ( sin a sin ß ) +- z2·--+z'2. __ . 
2R2 cos2 a cos2 ß 

(55) 



338 H. G. BEUTLER 

Here, l, z and z' arenot independent from each 
other, since the condition (36) must also be 
fulfilled, 

(36) 

The result for the special case z = 0 has been 
derived earlier, as follows: 

( 
cosß) 

z' =l sin2 ß+sin2 a·-- . 
cosa 

(45) 

It has been written in an abbreviated form, 

l=z' ;r. (46) 

This formula can be used to eliminate l, so 
that z' will be the only vertical coordinate left. 
For z=O, the result is, as follows: 

w. ·z'2 (sin
3 

a sin
3 ß) 

F.t+F/=--- ---+--
2R2 · 1'2 'cos2 a cos2 ß 

w·z' 2 sin ß w·z' 2 sin ß 
--·--+-·--

R2 · r cos2 ß 2R2 cos2 ß 

w·z' 2 (sin 3 
a sin 3 ß) 

= 2R2· r 2 cos2 a + cos2 ß 

sin ß sin ß 
-2r·--+r2·--. (70) 

cos2 ß cos2 ß 

w·z' 2 [sin3 
a 

F4+F/=--- ----sinß 
2R2 • r 2 cos2 a 

FrG. 14. Displace­
ment of spectralline 
by astigmatic cur­
vature at a distance 
z' from the Rowland 
plane in units of 
(z') 2 j2R f or all 
angles of incidence 
and diffraction. 

sin ß ] 
+--(1-r) 2 • 

cos2 ß 
(71) 

In order to obtain the equation of the curva­
ture, the angular deviation dß must be calcu.:. 
lated, which is given by the partial derivative 
a(F4+F/)jaw, and the result multiplied by R, as 
in Eq. (60). The result is as follows: 

a(F4+F4') z' 2 

----·R=--
aw 2R·r2 

[
sin3 a sin ß ] 

X ---sinß+--(1-r) 2 • 

cos2 a cos2 ß 
(72) 

Equation (72) represents a family of parabolas, 
the vertices of which lie at z' = 0, i.e., in the 
equatorial plane .. Since sin ß occurs in the first 
power, the curvatures of the parabolas will 
change their signs along the Rowland circle; they 
eiegenerate to straight lines for the case that the 
expression in the parenthesis becomes zero. 

The angular function of Eq. (72), which has 
been denotecl by lf/, is given in Eq. (73). It has 
been numerically evaluated for the whole rangc 
of a ancl ß; the results are represented in the 
diagram Fig. 14. For practical use, the numbers 
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as read from the diagram have to be multiplied 
by z12 /2R, the product being the displacement of 
the spectral line at z1 from the value at Z1 = 0. 

1 [ sin 3 
a sin ß ] 

\[!=- ---sinß+--(1-r)2 . 
r 2 cos2 a cos2 ß 

(73) 

From the diagram it is obvious, that the 
highest curvature occurs in the region of the 
Eagle mounting. Fora Paschen-Runge mounting, 
the spectrallines change their direction of curva­
ture three times. This behavior must be taken 
into account, if precision wave-length measure­
ments aretobe made at different "heights" of the 
spectrallines, especially if a mask has been used 
for obtaining several spectra on the same plate, 
and these spectra aretobe related to each other. 

(b) The Enveloping Curvature 

The astigmatic curvature comprises only one 
part of the dependence of the height Z

1 on the 
angle ß; it is preponderant only for the case of a 
short slit and large astigmatism, which is found 
chiefly at grazing incidence. If however the 
astigmatism is small, then the length of the 
mentioned parabolas is small or negligible. Under 
these conditions the enveloping curvature be­
comes important. 

The different points of the slit will give rise to 
different astigmatic images, and the center of 
each one is determined in height by a relation 
that can be derived simply from geometry, as 
follows: 

z: r= Z1
: r1

, 

cos a cos ß (74) 
z=z1·--; z1=z·--. 

cos ß cos a 

This equation can be used to eliminate z from 
Eq. (55), and if in addition the equations for the 
astigmatism are applied to eliminate l, then a 

curvature !lpb = f(z 12) will be obtained that gives 
the locus for the centers of the astigmatic images. 
It can be shown, that for z~O each astigmatic 
image is also a parabola, very similar tothat for 
z = 0 at the same angles a and ß. Therefore the 
curvature !lpb=f(z12) connects the vertices of the 
parabolae for the different points z at the slit. 

The start of the calculation is again Eq. (55) 

1 1 
w·l2(sin3 

a sin 3 ß) 
F4 +F4 =- --+--

2R2 cos2 a cos2 ß 

w·l( sin a sin ß) 
-- z·--+z1--

R2 cos2 a cos2 ß 

w ( sin a sin ß ) +-- z2·--+zl2. __ . 
2R2 cos2 a cos2 ß 

(55) 

The astigmatism must be introduced in the 
formulation of Eq. (51), containing the coordi­
nate z. Using the abbreviation of Eq. (46): 

z1 =l·r-zcos ß; l=~(z1 +z· cos ß)· 
cos a r cos a 

(75) 

Combining this equation with (74) yields the 
equation: 

l=2z1 jr. (76) 

By using these substitutions, z1 is the only 
vertical coordinate left in the equatibn, as follows: 

w· (2z1
)
2(sin 3 a sin3 ß) w·2z' 

F4+F4'= --+-- ---
2R2 · r 2 cos2 a cos2 ß R 2 · r 

( 
cos a sin a sin ß ) 

X Z
1·--·--+z1

·--

cos ß cos2 a cos2 ß 

w · z12 ( cos 2 
a sin a sin ß ) 

+- --·--+--
2R2 cos2 ß cos2 a cos2 ß 

This formula can be simplified as follows: 

(77) 

w·z12 [ sin3 a sin3 ß (sin a sin ß) 1 sin a+sin ß] 
F4+F41=--- 4--. +4---4·r --+-- --+r2·----

2R2 · r 2 cos2 a cos2 ß cos a cos ß cos ß cos2 ß 

= w·z
12 

(sin a+sin ß)X(~-4·tan a·tan ß). 
2R2 · r 2 cos2 ß 

(77a) 

w·z' 2 
( 1 tan a·tan ß) 

=--(sin a+sinß)X ---4· . 
2R2 . cos2 ß r 2 

(78) 
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FIG. 15. Displace­
mentof spectralline 
by enveloping cur­
vature at a distance 
z' from the Rowland 
plane in units of 
(z') 2 /2R for all 
angles of incidence 
and diffraction. 

0° . 20° acf 90° 
Angle of diffracti on 

The curvature at the plate can be obtained by 
analogy to Eq. (60) as the product of R with the 
partial derivative of Eq. (78) with respect to w, 
as follows : · 

a(F4+F4') z' 2 

~---·R=-(sin a+sin ß) 
aw 2R 

( 
1 tan a·tan ß) 

X ---4 . 
cos2 ß r 2 

(79) 

The result is again a family of parabolas, the 
vertices of which lie in the equatorial plane 
z' = 0. Their curvature changes sign repeatedly. 
The angular function rf> may be defined as 
follows: 

( 
1 tan a·tan ß) 

cp= (sin a+sin ß) ---4 . (80) 
cos2 ß r 2 

The numerical values of ci> have been calcu­
Iated; they are represented in the diagram 
Fig. 15. For the evaluation of any practical case, 
it is only necessary to read the number for the 
values a and ß of the particular spectral line 
from the diagram and to multiply by z'2/2R. The 
product is the displacement (in cm) of the line at 
z' from the position that it has atz'= 0. 

X. BROADENING OF THE SPECTRAL LINES 
BY ABERRATION 

Spherical aberration not only causes light of 
the wrong phase to fall on the focal point B, but 

also it causes light to reach points which lie on 
both sides of B. This broadening of the spectral 
lines can be calculated by the formulas (24) and 
(27). For the sidewise deviation the Eq. (6a) is 
applied. The partial derivative aFjaw designates 
the anglesAßthat the real rays arising from points 
P along w form with the geometrical directions 
from them towards the focus B. These deviations 
from the desired directions are projected them­
selves as distances AP from the true positions on 
the plate. From Eqs. ( 6c) and (17) and from the 
relation for the Rowland circle ß = 'Y, the magni­
tude Äp is determined, as follows: 

a(F5+ Fl) R · cos ß a(Fs+ F5') 
Ap =R (81) 

aw cos ß aw 

By introducing the Eqs. (24) and (25) for the 
aberration, there follows: 

a(F5+F5') 
AP=R·----

1 d(w4+2w2l2+l4) 
----·cf>. (82) 

aw 8R2 dw 

The result for the Rowland circle can . be ob­
tained easily, by using Eq. (27), as follows: 

1 (sin a sin ß) 
AP=-[4w(w2+l2)] --+- . 

8R2 cos a cos ß 
(83) 

There isaweil known example in the Iiterature 
for the broadening of the spectrallines by aberra-
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tion. It is a photograph taken by Edlen26 of some 
Iines in the vacuum ultraviolet, that gave rise to 
the theoretical considerations of Mack, Stehn, 
and Edlen27 who attempted no calculation of the 
broadening of the lines. Attention was directed 
only to the loss in resolving power and to the 
necessary restriction of the width of the grating. 
The formula (83), however, allows a quantitative 
calculation of the widths of the so-called "ghosts" 
of the photograph. 

The experimental data can be taken from 
Edlen's paper. A grating with 1183 lines per mm, 
and I m radius of curvature was ·used at angle of 
incidence a = 84.4 o. The line~ shown in the photo­
graph have wave-length of about 279A. Their 
broadening by excessive aperture of the grating 
can be determined, because the wave-lengths of 
five lines are given. The strong lines are widened 
by about 3.0A towards long wave-lengths and by 
about 2. 7 A towards short wave-length. 

Applying the generalized theory to this case, 
the optimum aperture can be determined by 
Eq. (20), which is evaluated with the help of 
Table I and the diagram Fig. 4. The calcula­
tion of the angle ß by Eq. (14) yields ß= 74° 12'. 
Therefore: 

(
2R3d')i 

p= ---;;;- y=3.59X0.22=0.790 cm. 

The evaluation of Eq. (83) for this aperture of the 
grating gives a half-width ÄA for the spectral 
lines : AA = 2. 51 X 1 o-3 mm. The dispersion in this 
spectral region is dl/ d}.. = 0.23 mm/ A ;28 the line 
half-width Äp"' is therefore 0.014A as determined 
by aberration. The resolving power, however, is 
19200 (equal to the number of rulings) and causes 
a half-width of the diffraction pattern of .014A. 
The result is, that the definition of the lines is 
controlled by the diffraction pattern, as was 
assumed in the calculation of the aliowed width 
of the grating in Eq. (27). 

Edlen increased the aperture of his grating 
stepwise up to 2p= 7.6 cm, corresponding to 4.82 
times the width that formula (29) permits. The 
broadening caused by aberration becomes then 

26 B. Edlen, Thesis, Upsala 1932. 
27 See reference 16. 
28 R. A. Sawyer, Experimental Spectroscopy (Prentice­

Hall, Inc., New York, 1944) p. 131. 

(4.82) 2 = 23.2 times !arger; the diffraction width, 
however, would decrease by the factor 4.82 if 
perfect focusing could be attained. Applying 
this factor to the earlier result, AP"' = 0.014A, 
APE = 3.2A is obtained for the broadening in the 
experiment of Edlen. 

The experimental values of 3.0 and 2.7A are in 
agreement with the theory; the slight discrepancy 
at the short wave-length side may be explained 
by some masking effect of the grating holder. 
The theory could hardly be expected to check 
better with a single experiment, which was 
not intended for the purpose of quantitative 
evaluation. 

XI. THE IMAGE FORMATION AND ITS IMPER­
FECTIONS FOR THE GRATING MOUNTED IN 

PARALLEL LIGHT (WADSWORTH 
MOUNTING) 

The large astigmatism of the spectra in 
Rowland's mounting was soon recognized as a 
disadvantage, especially because of the loss in 
intensity and of the difficulty in introducing a 
comparison spectrum. F. L. 0. Wadsworth29 

found that stigmatic images can be obtained 
from a concave grating illuminated by parallel 
light from a collimator. Wadsworth used his 
original instrument, with a small five-foot grating, 
only for visual observations with eyepiece on the 
grating normal, and he constructed a mechanical 
device that kept the eyepiece in focus as the 
angle of incidence was changed. In the following 
year, Runge and Paschen30 published an ex­
tensive study of the series spectra of oxygen, 
sulphur and selenium, photographed with a 6.5 m 
concave grating (20,000 lines/inch), which was 
mounted in parallel light. Apparently, Runge and 
Paschen invented the stigmatic mounting inde­
pendently. They applied this mounting to the 
study of the radiation emitted end-on by Geissler 
tubes, and emphasized the reduction of dispersion 
and focal length and the increase in aperture 
inherent in this mounting as compared with the 
Rowland if a grating of given size is used. The 
feature of stigmatic image formation is not 
stressed in their paper, although the use with 
Geissler tubes viewed end-on shows that Paschen 

29 F. L. 0. Wadsworth, Astrophys. J. 3, 54 (1896). 
3° C. Runge and, F. Paschen, Ann. d. Physik 61. 641 

(1897). 
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and Runge were weil aware of this fact. Fabry 
and Buisson31 introduced a concave mirror in­
stead of a lens, to avoid the absorption and 
chromatic aberrations of lenses . .l.VIeggers and 
Burns32 described an instrument with a spherical 
mirror that is in permanent use at the Bureau of 
Standards. A. Poritzky33 replaced the concave 
mirror by a paraboloidal mirror, that throws the 
light back along its axis to a perforated plane 
mirror at the slit, and thence to the grating. 

(a) The Focal Curves for the 
W adsworth's Mounting 

Equation (16a) is the condition for the disap­
pearance of the aberration arising from the quad­
ratic members in the characteristic function (5) 
for the light beams. As already mentioned, the 
values: 

r= oo and ß=0°, (18) 

fulfill that equation, and simultaneously they 
make the higher members in Eq. (16) vanish also. 
Furthermore it has been pointed out that the 
introduction of these values into Eq. (16a) Ieads 
to the locus for the points at the normal where 
parallel light striking the grating at an angle a is 
focused, as 

r' = R/1 +cos a, (19) 

and that this curve is a parabola, with its focus at 
the center of the grating. For a=0°, the light is 
focused at a distance r = R/2 from the grating, 
and for a=90°, at r'=R, respectively.34 Along 
this focal curve, all the wave-lengths up to 
m(}../d)=1(=sina+sinß=sin 90°+sin 0°) can 
be obtained. By combining Eq. (19) with (14), 
from which cos a can be replaced by (1-sin2 a)! 

31 C. Fabry and H. Buisson, J. de Physique [4] 9, 940 
(1910). 

32 W. F. Meggers and K. Bums, Sei. Pap. Bur. Stand. 
[441] 18, 191 (1922). 

33 A. Poritzky, Proc. of the Fifth Conference on Spectro­
scopy, p. 38. 

34 Sometimes the opinion is expressed that the focal 
length of a grating in the Wadsworth mounting is one-half 
ofthat in the Rowland circle mounting. This statement is 
not generally correct. The distance from grating to plate in 
Wadsworth's mounting lies between R/2 and R, and on the 
Rowland circle between R and about R/10. An example 
may illustrate this point-the focus for 4000A in the second 
order, diffracted by a 30,000 lines/inch grating, lies for the 
Eagle mounting at 0.88R, for the Wadsworth mounting at 
0. 77 R. Hence, the dispersions in these two cases are only 
slightly different and the apertures of the grating in the two 
mountings differ only by 30 percent. 

= (1-m2[}..2/d])!, the expression becomes 

R 
~- ~~ 

- 1+(1-m2[}.. 2/d])!. 

This equation shows the dependence of the focal 
length on the wave-length}.. which appears at the 
normal. 

In order to find the focal curve for any given 
angle a, as it extends to both sides of the normal, 
the restriction ß=0° is dropped, and Eq. (16a) is 
evaluated for the condition r = oo only. The result 
IS: 

r' =R·cos2 ß/(cos a+cos ß). (85) 

This equation reduces to Eq. (19), as it should, 
for ß = 0°. The curves represented by Eq. (85) are 
roughly circular, but an analysis shows that they 
are a family of lemniscates with a parameter a. 

Their common points lie in the center of the 
grating, for ß= ±90°. In Fig. 16 the focal curves 
are shown. Only the parts in the neighborhood of 
the normal that give satisfactory images are 
drawn, in order to keep the figure simple. The 
wave-lengths as diffracted by a 30,000 lines per 
inchgratingare also indicated. Those parts of the 
focal curves with ß > 90° (behind the grating) are 
not closed loops, as are those before the grating, 
but they reach infinity twice for cos a = - cos ß; 

therefore the complete curves may be called 
hyperbolic lemniscates. The shape of the loops in 
front of the grating, for each curve in the family, 
is approximatel y an ellipse with small eccentricity, 
the Ionger axis lying at the normal of the grating, 
the two sides for +ß and -ß being symmetrical. 
For !arger angles a, the eccentricity of the loops 
becomes smaller and smaller, and for a = 90° the 
transition to the circle r' = R · cos ß is complete. 

There is a striking difference between these 
curves and the Rowland circle: the focal curves 
for the different angles of incidence have a 
different curvature, limiting the use of a machined 
rigid plateholder, and necessitating one with an 
adjustable curvature for different angles. Further­
more the dispersion at the normal (ß = 0°) is 
different for the various values of a; it increases 
from one-half the value of the Rowland circle for 
a = 0° to the full value for a = 90°, as will be shown 
in a later section. The reason for this change is 
found in the variable distance of the focus from 
the grating according to the parabölic Eq. (19). 
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This vanatwn has another consequence-the 
magnification factor for a length z at the slit, that 
is stigmatically focused as z' at the normal, in­
creases from a value, z' /z=R/2R' where R' is the 
radius of curvature of the collimating mirror, to 
z' / z = R/ R' as increases from 0° to 90°. This 
magnification of course governs not only the 
length z' of the spectral lines, but also their 
width, to the extent that this depends on the 
width of the slit; that is, for image widths wider 
than the diffraction pattern caused by the 
grating. There is another special solution of 
Eq. (85) worth mentioning,-the case a=ß, 
which leads to 

r' = (R/2) cos ß. (86) 

This equation is that of a circle with the radius 
R/ 4 as the locus for the focal points. The arrange­
ment can be visualized as a kind of Eagle mount­
ing, in which the grating is illuminated with 
parallel light. 

In the general Eqs. (10) and (11), the terms in 
F2 and F2' which contain w 3 and w 4 vanish for the 
conditions r= oo, ß=O, and since in F6+F/ 
the same angular coefficients are present, they 
will likewise va . ..nish for the same conditions. On 
the normal to the grating, the image formation 
is therefore quite free from aberrations arising 
from the grating. 

Usually, however, in grating spectroscopy, a 

satisfactory image formation is wanted over 
broad ranges of wave-length, and therefore the 
conditions must be investigated at which images 
are formed over a considerable range of ß around 
ß=O. The wave-lengths appearing in their de­
pendence on a can be ·read from Fig. 16, or 
more exactly from the diagram Fig. 2; they are 
the same as those appearing in Rowland's or 
Abney's mounting under the same angles. The 
fact that the focal distance is different in the 
two cases, has been mentioned already. Fig. 16 
represents the positions of the focal curves as a 
function of wave-length, as a grating with 30,000 
lines/inch is turned about its axis to vary a. 

(b) The Aberrations in the Stigmatic Mounting 

1. The Cubic Terms 

The same mathematical conditions hold here 
as for the Rowland circle. The aberrations arise 
from the contributions of the higher members of 
the series development in Eqs. (10) and (11). 

By introducing the conditions r = oo and 
r' =R cos2 ß/(cos a+cos ß) (Eq. (85)) into Eq. 
(23), the effect of the cubic terms may be in­
vestigated for the condition of parallel light 
striking the grating. Equation (23) becomes 

W3 sin ß· (cos a+cos ß) ·cos a A - z-. (87) 
2 R 2 ·cos2 ß 4 

Focal curves for astigmatic mounting. 

FIG. 16. Focal dis­
tance from the center 
of the gra ting in the 
\Vadsworth moun ting 
in units of R for all 
angles of incidence 
and diffraction. 

Focal distance from the center of the grating in unifs of R. 
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If 'A is expressed in terms of a and ß by use of 
Eq. (14), the maximum value for Wis given by: 

( 
d · R 2(sin a+sin ß) · cos2 ß ) i 

w~ . 
2m·sin ß· (cos a+cos ß) ·cos a 

(88) 

After trigonometric transformation, the equation 
may be written: 

(
d·R2 a+ß cos2 ß )t 

w~ --·tan--· . 
2m 2 cos a·sin ß 

(89) 

This expression governs the maximum width of 
the grating in Wadsworth's mounting. In com­
parison to the Rowland circle, the allowed 
width is rather small. The angular function 

( 
a + ß cos2 ß ) i 

Ys= tan--· , 
2 cos a·sin ß 

(90) 

has been numerically evaluated for the angles 
a and ß of a grating with 30,000 Iines/inch, 
and the results are represented in Fig. 17. 

Numerical jactors in the formula for optimal width. 

The numerical values of the factor (dR2/2m)l 
have been calculated for the more usual sizes of 
gratings, and are listed in the accompanying 
table. The parameters for the particular range 
of a and ß and 'A, as taken from the diagram 
Fig. 17 must be multiplied by these factors in 
order to obtain the width w for optimum resolu-

TABLE II. Values of (R2d/2m)~ form= 1. 

R 1-meter 10-foot 21-foot 30-foot 

lines 
d' = 15,000 -- 0.94 cm 1.98 cm 3.23 cm 4.10cm 

in eh 

lines 
d=30,000- 0.745 cm 1.57 cm 2.56 cm 3.25 cm 

in eh 

tion in any special case. The diagram shows that 
the width becomes more and more restricted as 
the angle ß increases. The wave-length range, 
for which a satisfactory grating width can be 
used and a useful resolving power obtained, 
grows with increasing angle of incidence-or for 
ß nearly constant, with increasing values of 'A and 

of m. This fact is emphasized by the historical 
use of the stigmatic mounting: the outstanding 
results obtained by it were the measurements in 
the photographic infra-red by Meggers and his 
collaborators at wave-lengths, which according 
to Fig. 16 appear at large angles. When gratings 
with more lines per inch are ruled, the usefulness 
of the stigmatic mounting will be extended into 
the ultraviolet region, even for low orders. 

Some differences between this aberration in the 
stigmatic mounting and the aberration treated 
earlier (Section VI, part b) must be emphasized. 
The aberration represented by Eq. (89) is not 
a "spherical aberration," since it restricts the 
width of the ruled surface only, not the length 
of the grooves. Furthermore, the aberration is 
not symmetrical in +w and -w (as it was on 
the Rowland circle), but it changes its sign when 
w changes sign. This unsymmetrical character of 
the aberration results from the fact that a third 
root has been evaluated. Therefore, Win Eq. (89) 
represents the total width that is allowed. 
Furthermore, the aberration changes sign with ß 
on passing through the normal to the grating. 
For spectral lines on the normal itself, the 
aberration vanishes and w may become infinitely 
large. 

2. The Aberration Arising from Higher Terms 

In analogy to the treatment given for the 
Rowland circle, the aberrations arising from the 
fourth power members in the series development 
must be discussed. 

The third member in F2+ F~ does not vanish 
for ß~O. It contributes to the aberration as 
follows: 

f
+W/2 a(F2(S)+Fl<3)) Wca>'1 

------dW=--
-wt:! aw 2 

x[sin
2 

a(cos
2 a- cos a) 

r 2 r R 

+ sin
2 
ß(cos

2 ß _ cos ß)] ~~. (91 ) 
(r') 2 r' R 4 

By putting r= oo and substituting the value 
of r' from Eq. (85), this' equation becomes: 
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Optimal width for stigmatic mounting tn units of W0 =V* 
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FIG. 17. Optimal 
width of grating in 
the Wadsworth 
mounting in units 
of (dR2/2m)'s for all 
angles of incidence 
an d diffraction. 
Grating space, d; 
order, m. 
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l
+wl 2 ß(F2Ca)+F2'<3

). Wc 3)
4 sin2 ß(cos a+cos ß) 2 (cos2 ß(cos a+cos ß) 

-----dw=--· X 
-W/2 aw 2 R2·cos4 ß R·cos 2 ß 

cos ß) A. 
~-. 

R 4 

Hence: 

Wca) 4 (cos a+cos ß) 2 cos a·sin2 ß A. --· . <-. (92) 
2 cos4 ß R 3 4 

Using the general grating Eq. (14) to eliminate 
A., and introducing (sin a+sin ß)/(cos a+cos ß) 
= tan (a+ß) /2, the solution for W is: 

(
R 3d a+ß 

Wca) :( 2 - tan --
2m 2 

cos 4 ß )l 
. (93) 
cos a·sin 2 ß(cos a+cos ß) . 

The factor two before the radical will be ex­
plained later. 

The value W(3) becomes infinite for ß = 0 and 
with a high er order than did W in Eq. (89), 
since sin ß to a higher order appears in the 
denominator. The sign of the aberration Wca), 
however, does not change if ß passes through 0°; 
furthermore the aberration is symmetrical in W, 
since in Eq. (91) W appears in its fourth power. 
Therefore, in Eq. (93) a factor of two has been 
introduced in order to designate the allowed 
total width. 

The numerical relation of Wca) to W of Eq. 
(89) must be discussed. The factors in R, d, and 
m yield the following ratio: 

(R 3d/2m)l: (R 2d/2m)l. 

In Table I an expression has been evaluated, 
that is larger by the factor (2)! than (R 3d/2m)l; 
the values ofthat table therefore must be divided 
by 1.41. The cube root has been tabulated in 
Table I I. The ratios of the corresponding val:ues 
in the two tables are in the neighborhood of five, 
and after the division by 1.41, the factor of 
three is left in favor of the fourth root values. 

The comparison of the two angular functions 
in Eqs. (90) and (93) can be facilitated by 
transformation of Eq. (93) jnto an expression 
that contains the already evaluated function of 
Eq. (90) as a factor, as follows: 

Wcs><2 -·-·tan--·----

[

R 3d a+ß cos2 ß 

2m 2 cos a·sin ß 

cos ß 
(94) 

( 
cos a) 

sin ß 1+--
cos ß 
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The last fractional factor is the only difference 
between the two angular functions. The magni­
tude of that fraction depends on the values of 
a and ß. Their choice is however restricted-at 
least to the values for which Ys [Eq. (90) and 
Fig. 16] is two or larger, and in addition a will 
be restrieted to values smaller than 80°. The 
fraction eos ß/sin ß will then have values larger 
than one, probably around three. · The angle a 
will be larger than ß; the total value of the last 
faetor will probably beIarger than one, but may 
in extreme regions deerease to one-half. Sinee Ys 
was restrieted to values larger than two, and Ys is 
the eube root of the angular funetion, the two 
roots may be eompared as follows: 

j(W<a>) :f(W) = 2(8 ·1/2)1: (8)1= 2.8: 2. (95) 

The faetor two before the fourth root takes 
eare of the same faetor in Eq. (94). The result is, 
that the angular faetors are about equal, even 
in unfavorable regions of a and ß. A more 
thorough investigation shows that there is on the 
average a faetor of two in favor of the fourth 
root funetion, especially within the regions of 
small aberration whieh may be determined from 
Fig. 16. 

The total result is that for the usual ehoiee of 
R and d the aberration arising from F2<3> + F2'< 3> 

is much smaller than that from the eubic mem­
bers (Eq. (88)), allowing the use of three times 
or more the width of the grating than would be 
possible under the Iimitation of W<a> only. Sinee 
w(3) is a symmetrieal aberration, it does not 
restriet the width allowed by Eq. (89) at all, 
but only shifts its range with respeet to the zero 
point of the w-eoordinate. 

Proceeding to the other members in the 
series dcvelopment, the quartic terms (10e, 11e) 
Fu+Fs', which give risc to a spherical aberration 
must be eonsidered, sinee w and l enter sym­
metrically. 35 Since these are fourth power terms, 
the aberration arising from them will also be 
symmetrieal with respeet to the eoordinate w, 
and will therefore not restriet the value of Eq. 
(89) obtained from the eubie term if the magni­
tude of the latter is eonsiderably smaller. 

For the evaluation, the eonditions r = oo and 

35 Campare the discussion of the aberration for the 
Rowland circle, and Eq. (27), Section VI, part b. 

r' =R eos2 ß/(eos a+eos ß) must be introdueed 
into the Eq. (24) eombined with (27). 

Using the grating Eq. (14) to eliminate A and 
putting p2 =w2+l2, Eq. (24) beeomes: 

_t_(cos a+cos ß cos a:cos ß) 
8R2 R·eos2 ß 

d 
~ --(sin a+sin ß). (96) 

4m 
Henee: 

2R 3 ·d (sina+sinß) 
p4~ ----------, 

m (eos a+eos ß) · tan 2 ß 
(97) 

(
2R3 ·d a+ß )l 

P~ ~·tan-2-·eot
2 ß . 

The eireular aperture, with the radius p, that 
is allowed by Eq. (96) beeomes infinite for ß=O. 
I ts magnitude for finite values of ß has to be 
eompared with the limitations for Was given by 
Eq. (89), where the definition of p as one-half of 
the total width allowed has to be kept in 
mind. The eomparison of the numerieal faetors 
(2R 3d/m)l and (R2d/m)! is faeilitated by Tables 
I and I I, showing a faetor of five in favor of p 

in Eq. (96). The angular funetion ean be esti­
mated by rewriting the faetor of Eq. (96) so 
that it eontains the funetion of Eq. (90) evalu­
ated in Fig. 17, as follows: 

( 
a+ß )l 

tan -
2
-·cot2 ß 

( 
a+ß eos2 ß eos a)l 

= tan -2-· eos a·sin ß. sin ß · (98) 

The magnitude of the additional factor cos a/ 
sin ß must be diseussed. This factor is always 
larger than one for the useful range of the stig­
matic mounting and in the neighborhood of the 
normal it beeomes as large as five or ten. The 
diseussion can be restricted to the case that 
y>2 (from Eq. (90) and Fig. 17). Introducing 
the faetor two (for 2p = W) into this equation, 
the relation (95) beeomes: 

f(2p) :j(W) = 2(8.1)!: (8)!. 

This yields a faetor of at least 1.6 in favor of 
the fourth root, and eombining it with the 
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factor 5 as obtained earlier by comparing the 
dimensional factors, the total product becomes a 
width 2p that is at least eight times larger than w. 
Remernhering the symmetrical character of the 
quartic aberration in distinction to the unsym­
metrical one of the cubic aberration, it follows 
that the quartic expression of Eq. (96) is negli­
gible in comparison tothat of Eq. (89) and even 
that of Eq. (93). 

3. Limitation of the Attainable Resolving Power 
by the Aberration, ij the Light Striking 

the Grating is Strictly Parallel 

The quantitative evaluation of the aberration 
gave the result that at the normal itself the 
grating may have any size, but that even for 
angles as small as about ß = ± 2° the useful 
width is so small, that the resolving power of the 
usual gratings (with 21-foot radius of curvature, 
15,000 lines per inch and 6 inches ruled width) 
cannot be fully utilized, the optimal width at 
a = 40° to 60° being only four to five inches. If, 
however, the photographic plate used will not 
reveal this resolving power, the darnage clone by 
those parts of the grating that diffract the light 
out of phase is small. The stigmatic mounting of 
a grating that has the dimensions mentioned is 
in competition with a Rowland circle mounting 
with respect to resolving power only over a 
range of about 400A. This range is of course 
ample to cover the end of any Rydberg series in 
atoms, or an isolated band in molecular spectra. 

It is evident from Eq. (89) that, the other 
variables being constant, an increase of the 
radius of curvature increases the maximum re­
solving power proportionally to Ri, since the 
allowed width grows with this power. For the 
same grating (R and d being constant) the re­
solving power increases with higher orders of the 
spectrum. If the grating has sufficient size, then 
the allowed width decreases with (1/m)l, and 
since the resolving power increases proportion­
ally to m for any given constant width, the 
attainable resolving power in different orders in­
creases with mi, other things being equal. The 
comparison of gratings with. the same radius of 
curvature but with different grating constants 
shows that the allowed width decreases with 
(d)l; a grating with twice as many lines allows 

at the same angles a width that is smaller by 
(!)!, since the resolving power per unit width is 
doubled, the net gain amounts to the factor (4)! 
= 1.58. But, of course, the wave-length range 
over which the high resolution is obtained, will 
be reduced by a factor of 2(2)1= 2.52, if in both 
cases the same fraction of the theoretical re­
so! ving power is wan ted. 

4. Dependence oj the Aberration on the 
Collimating System 

All these considerations are rigorous only if 
exactly parallel light strikes the grating. This 
condition requires either a perfect telescope lens 
as a collimator, an off axis paraboloidal mirror 
with the slit at its focus, 36 or a combination of 
paraboloidal mirror and plane mirror as used by 
Poritzky. 37 Any spherical mirror with the slit in 
a "focus" off axis will show aberrations in the 
"parallelized" beam of light which will be greater 
the larger the aperture is. 

The question arises if it is possible to compen­
sate for the aberrations of the grating by those of 
the collimating mirror. This problern has not yet 
been investigated; it is however accessible by the 
powerful methods that have been developed in 
the general grating theory. The Eqs. (1)-(12) are 
of course rigorously valid for the concave mirror, 
if the grating constant d is taken equal to infinity. 
The main consequence of this condition occurs in 
Eq. (14), which becomes, for d= oo : 

sin a+sin ß=O. (99) 

Equation (99) is simply the Iaw of geometrical 
reflection, to wit 

a=-ß. (100) 

This relation allows the evaluation of the 
aberration in the light beam that is made parallel 
by the concave mirror. The law of the reversi­
bility of the direction of light can be used to apply 
literally the formulas developed earlier; instead 
of making the light ernerging from the slit 
parallel, the reverse process may be used and the 
parallel light focused by the mirror on the slit. 
This corresponds to a simple interchange of r, a 

36 This was nearly realized by Fabry and Buisson, 
reference 31. 

37 A. Poritzky, reference 33. 
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and r', ß in the formulas developed, and is per­
fectly permissible. 

The collimating mirror corresponds then to a 
grating in Wadsworth's mounting, with r= oo 

and r' = R · cos2 ß / ( cos a + cos ß') according to 
Eq. (85). The introduction of Eq. (100) yields the 
equation: 

r' = (R/2) cos ß. (101) 

The main aberrations in this concave mirror 
are represented by the cubic terms in Eq. (23), 
that gave as the allowed optimum width: 

W3 (sin ß(cos a+cos ß) · cos a) :( ~- (
87

) 

2 R 2 ·cos2 ß 4 

By introducing Eq. (100), this equation is 
simplified: 

W3 ( - sin a · 2) /. X 
- <:::-. 

2 R 2 4 
(102) 

For the allowed width, thc solution in W is: 

( 
R2·A. )i 

vV;( . 
4( -sin a) 

(103) 

The aberration is unsymmetric in w, by the 
same reasoning given earlier, that means that the 
signs of the phase shift are opposite for -w arid 
+w. The evaluation of the allowed width will be 
carried out for a 21-foot mirror at the wave­
length 6000A; the slit and the grating may be 
close together. F or a distance bet.ween them of 
16 cm, a=8 cm/320 cm= 1/40. The calculation 
is as follows: 

(
6402

• 6 ·10-5)! 
W :( = (246)1 = 6.25 cm. 

4. (1/40) 

That is, at 6.25 cm from the center of the 
mirror the phase shift amounts to X/ 4 or -X/ 4 of 
the wave-length 6000A. Assurne that the parallel 
beam from the mirror is such that rays travel 
from the center of the mirror to the center of the 
grating, that the grating has a 21-foot radius ancl 
30,000 Jines/inch; the region about 60001\ appears 
about at the normal when, as Fig. 2 shows, an 
angle a of about 45° is subtenclecl. From Table II, 
the dimensional constant for the grating used can 
be seen to be 2.56 cm, and in Fig. 17 the angular 
function for ß=4° has thc valuc of about 2.5, so 
that the width allowed for the· grating will be 
6.4 cm, if it is illuminated by strictly parallel 

light. Thus at a distance of 6.4 cm from the center 
of the grating, diffracted light of a wave-length 
around 6000A has a phase shift of ±X/4, the sign 
depending on the direction of w. 

The distance 6.25 cm at the mirror, the result 
from the preceding paragraph, projects itself on 
the grating as 6.25/cos a, which (for a=45°) is 
8.8 cm. This example shows that the same kind 
of aberration occurs in the collimating concave 
mirror andin the concave grating, and that both 
have about the same order of magnitude. I t is 
however possible to arrange the optical parts so 
that the two aberrations wiii cancel each other 
totally, or at least partially. 

In order to find the conditions for this can­
cellation, it is necessary to develop the formula 
for mirror and grating in the same coordinate 
system. 

Without going into the details of the derivation 
it may be said that if the slit and mirror are on 
one siele of the grating normal while the spectrum 
is formed on the other side, as in the usual 
mounting, the aberrations are less than if the 
spectrum and mirror positions are interchanged, 
so that the light beams from the slit to the 
mirror and from the grating to the spectrum 
cross. In the former case the phase shifts intro­
duced by the mirror and by the grating are in 
opposite senses, while in the latter case they have 
the same signs and a much smaller grating is re­
quired to avoid loss of resolution. 

The choice of the magnitude of the angle a', 
which the slit beam makes with the axis of the 
mirror, and of the radius of curvature R' of the 
mirror, offer the possibility of counterbalancing 
the "cubic" aberration of Eqs. (20) and (87) to 
a high degree for any given wave-length and 
order. It is only necessary to read the aberration 
factors from Fig.17 and Table II, and to introduce 
their product w into Eq. (103). The evaluation 
for any wanted wave-length region X can be 
carried out for a variation of either a or R. The 
change of a wiii probably mean a sideways 
motion of the slit, that of R the choice of another 
m1rror. 

There is some ~xperimental proof for the 
derivations in the last paragraphs. Czerny and 
Turner38 experimented with an infra-red concave 

38 M. Czerny and A. F. Turner, Zeits. f. Physik 61, 792 
(1930). 
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mirror system corresponding to each of the ar­
rangements mentioned and took photographs of a 
slit on a plate without using a grating. They 
found that the slit image was by far better de­
fined, in the case where the beams did not cross, 
but did not give any calculations or theory. As 
can be seen from their pictures, the arrangement 
shows not only aberration, but also much astig­
matism and considerable coma. However, the 
mathematical treatment of coma is related to 
that of the "cubic" aberration, and therefore the 
pictures of Czerny are evidence in favor of the 
convenional form of Wadsworth mounting. 

I t is apparently not possible to compensate the 
quartic members of Eqs. (92) and (97) by either 
relative position of the mirror and grating. This 
arises from the fact that sin a and sin ß appear 
only in even powers in both equations if one sets 
d= oo as is necessary for the collimating mirror. 
But as shown before, the phase shifts due to the 
quartic members are much smaller. The aberra­
tion arising from Eq. (96) is about one-third of 
that appearing on the Rowland circle. 

The fact that the cubic aberration can be thus 
coun terbalanced makes the use of paraboloidal 
collimating mirrors hardly necessary. Even the 
application of a second plane mirror between 
spherical collimating mirror and concave grating 
seems unwarranted. The same situation, of 
course, holds for the use of a telescope lens as a 
collima tor (W adsworth). The cu bic aberra tions 
of the concave grating, if illuminated by parallel 
light, darnage the resolution so much, that it is 
better not to use a strictly parallel beam, but 
rather one that shows the phase shifts in the 
opposite sense to those introduced by the grating. 
Perfectly paralle1ized light is advantageaus for 
illuminating a plane grating, but not for a 
concave grating. 

( c) The Astigmatism of the W adsworth Mounting 

The Waclsworth mounting is generally known 
as the stigmatic mounting of the grating ancl has 
been usecl to obtain on the plate intensity patterns 
that hacl been imagecl on the slit. The stigmatism 
of this mounting is however much more restrictecl 
than that of a system using lenses ancl a plane 
grating or a prism. The quantitative evaluation 
of the astigmatism can easily be performed. 

The clirections of the light paths in the vertical 
sheets of light that inclucle z ancl z' ancl l at the 
grating, and that are inclined at the angles a and 
ß to the normal (Fig. 1) are governecl by the 
members F3 and Fa' of our general formula, as 
shown above in Eq. (35). The application of 
Fermat's theorem along the coorclinate l yields 
the focusing condition for horizontal cross hairs 
derived in Eqs. (36)-(38) which is 

(
1 1 cos ß) 
--cos a+---- =0. 
r r' R 

(38) 

If parallel light strikes the grating (r = oo), 
Eq. (38) yielcls for the secondary focus rs': 

rs' =R/(cos a+cos ß). (104) 

The relations of the two focal curves, r' (Eq·. (85)) 
for the spectrallines and r s' for lines perpenclicular 
to them, become especially simple for the case 

. (3 = 90° when both reduce to 

r' = R/ (1 + cos a). (105) 

In other words: On the normal of the grating 
the Wadsworth mounting images the slit stig­
matically. The locus for these stigmatic images is 
a parabola with the grating center as its focus 
and R/2 as its parameter (Eq. (19)) as has been 
shown earlier. 

For points off the normal there is a deviation 
between the focal curves for r' and for rs'. The 
distance between them can easily be determinecl 
from Eqs. (85) ancl (104) 

R 
r s' - r' ( 1 - cos 2 ß) 

cos a+cos ß 
R·sin 2 ß 

cos a+cos ß 
(106) 

I t is clear that the secondary focal curve always 
lies outside the focal curve for the spectrum and 
that the distance between them increases sym­
metrically on both sides of the normal proportion­
ally to sin2 ß for any given angle a. The relative 
deviation of the two focal curves (rs' -r')/r' 
from the spectral focus is especially simple: 

rs' -r' R·sin 2 ß R· cos2 (3 
tan 2 ß. (107) 

r' cos a+cos ß cos a+cos ß 
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This equation shows that the fraction 
(rs' -r')/r' is independent of the radius of curva­
ture and of the angle of inciclence. 39 Correspond­
ingly, the relative deviation from the secondary 
focus is: 

r/ -r' R ·sin 2 ß R 

rs' cos a+cos ß cos a+cos ß 
sin2 ß. (108) 

This formula is useful in the evaluation of the 
length of the astigmatic images in the neighbor­
hood of the normal. For example for ß=5° 45', 
the value of sin2 ß is 0.01 and the spectral lines, 
by similar triangles, have a length of 1 percent of 
the length of the grating rulings. For ß = 11° 20' 
the value of sin2 ß becomes 0.039. The range of 
11° 20' for a 30,000 Iine grating covers a wave­
Iength range near the normal of 3000A in the first 

39 Since the grating acts as a mirrar for a = -ß, Eq. (107) 
gives a very simple formula for the astigmatism of a 
concave mirrar if struck by parallel light. 
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order. I t is quite feasible to use such a range, and 
at its extreme end a point source on the slit would 
be drawn out to a 3-mm image for 7 S-em rulings. 
Fora 6000A range, sin2 21° 15'=0.1320 and the 
astigmatic length is 10.0 mm. Comparison with 
Fig. 7 shows that for the Rowland·circle mounting 
an astigmatism assmallas this is obtainable only 
for wave-lengths up to 4000A in the first order. 

I t was noted earlier that the spectral focus 
curves are a family of hyperbolic lemniscates. 
The curves for the secondary foci are a 
family of hyperbolas with the polar equation 
rs' =R/(cos a+cos ß'), the focus of which lies in 
the center of the grating and the vertex of which 
envelops the conjugated lemniscate for ß = 0 and 
r'=R/(cos a+l), which is a common tangential 
point of both. For a=90°, the hyperbola de­
generates into a straight line at the distancc R 
from thc grating, and is tangent to thc circular 
spectral focus curve R · cos ß. 
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I N an earlier report on the Ishihara test for 
color blinclness1 wc presen ted a brief history 

of the test from the original edition; issuecl in 
1917, to the last J apanese cclition of which we 
have a record in this country, the ninth edition 
issuecl in 1940. lVIention was also made of the 
British reprint of the ninth edition, issued in 
Lonclon in 1943. 

That report is the first of a series clesigned to 
cvaluate in turn various color tests as means of 
analyzing and cletecting defective color vision. 
The data reported were collected during the 

t L. H. Hanly, G. Rand, antl M. C. Rittler, Tesls for lhe 
Detection and Analysis of Color Blindness. 1. The Ishihara 
Test: An Evaluation, J. Opt. Soc. Am. 35, 268 (1945). 

course of a study of some 106 persons having 
defectivc color vision of varying types and 
amounts, including 74 who had definite color 
defects and 32 who had low, but normal, color 
vision. To study these persans a comprehensive 
battery of color tests was used, some of which 
are well-known in the field of color blindness 
testing, some are less well-known, and some were 
clevised in this laboratory. The fifth edition of 
the Ishihara test, one of the best known of the 
shorter eclitions, was selected for inclusion in the 
battery of tests. The results obtained from 
the entire battery aidecl in the classification of the 
color uefect as to type anti extent and at the same 
time permitted us to evaluate each test of the 


