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ABSTRACT

This paper details the solutions of binary star orbits based on the Fourier transform of the
equations of motion. The method has the advantages of a least-squares fit to the weighted
observations, noniterative and impersonal solution of the exact equations, and adequate error
analysis. The method is applied to spectroscopic and visual binary systems. In addition, it allows
for the solution of an orbit based on the position angles and separations separately. The relevant
equations for each of the four cases are presented. An algorithm for the implementation of each
solution is discussed. Sample orbits were calculated by the Fourier transform method, and the
results are compared, when possible, with previously published orbits for the same systems.

Subject headings: functions: numerical methods — stars: binaries — stars: visual multiples

I. INTRODUCTION

The purpose of this paper is to present relevant equations involved in the use of the Fourier transform in the
computation of binary star orbits, and to discuss some aspects of their implementation. The discussion is limited
to cases of orbital eccentricity e less than unity. The remaining portion of this section discusses the desirability of
this approach to the problem and its advantages in comparison with the plethora of other methods available.
Section II presents equations concerning the computed Fourier transform of Kepler motion seen in four astro-
nomical contexts: the spectroscopic binary, the visual binary, the visual binary when no information concerning
separations is available, and the visual binary when no information concerning the position angle is available.
In addition, algorithms for computing the orbital elements are presented for each of these cases. Section III is
devoted to some of the complexities which arise in the implementation of the theoretical results derived in § II.
Section IV presents a general discussion of the method and some conclusions that may be drawn.

Before discussing particular manifestations of orbit determination theory, it is important to phrase the problem
in its observational context. For a particular system, one has a finite number of observations, each having some
relative weight, and the hypothesis of Kepler motion is presumed. The analysis procedure must address the following
concerns: (1) whether Kepler motion is a justifiable hypothesis, or whether the data is adequately represented by
some simpler hypothesis in combination with observational uncertainty; and (2) whether Kepler motion is an
adequate hypothesis, or whether additional effects, such as apsidal motion, unseen companions, etc., need be
introduced. The observations contain components of signal, which is the systematic variation of the observable
quantity, and noise, which is the unavoidable contribution of observational uncertainty. The orbit determination
problem is then to determine the best (in some specified context) estimator of the signal in the presence of the
noise, and to measure the uncertainty in the determined properties of the signal due to the noise.

The role of the theory developed in § I is to determine the properties of the signal due to Kepler motion. The
orbital elements which describe Kepler motion fall into three distinct groups. The first is the periodicity of the
motion. Kepler orbits are a particular subset of periodic functions, and hence procedures must exist for deter-
mining the periodicity which make no reference to the Kepler hypothesis. Ideally, the orbital period should be
determined in such a manner, and the orbital analysis, which introduces the Kepler motion hypothesis, should
be done at fixed period. In practice, the orbital period may be determined in the manner described in § III. The
second group of orbital elements are those dealing with scale and orientation in space. The observed amplitude
of motion is related by a constant to an ellipse of unit semimajor axis. The elements £, i, and w are simply related
to the Euler rotation matrix angles (¢, 6, and ¢, respectively, in the notation of Goldstein 1950). If the other
elements are known, these may be directly measured in either configuration or transform space. The third group
consists of the eccentricity e and the time of periastron passage 7. These dictate motion in the unit ellipse. The
determination of these elements introduces the Fourier transform. Motion in the unit ellipse is related to motion
in the unit circle through Kepler’s equation. There appear to be two widely accepted methods of solving this
equation. The first is through iteration. One presumes the values of P, T, and e, and then iterates by any of a
wide variety of schemes to solve Kepler’s equation at each of the epochs of observation. The great power of the
Fourier transform approach to orbital computation arises through the well-known properties of the Fourier
transform of Kepler’s equation. As demonstrated in § II, solution of Kepler’s equation at each epoch of observation
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is avoided. Hence the Fourier transform approach needs no preliminary information concerning T and e, and all
elements, with the exception of the orbital period, may be computed directly from the Fourier transform of the
observations.

The effects of observational noise are particularly suited to discussion in the transform domain. In the case of
random observational uncertainty, the spectrum of the noise in the transform domain is frequency independent
(white noise). It is beyond the scope of this investigation to consider the sources of nonrandom observational error,
although it should be noted that spectral analysis of the noise is a useful tool for detecting the presence of non-
random noise. Of particular interest are some of the techniques available in the transform domain for minimizing
the effect of the noise, especially the optimal (Wiener) filtering technique. The implementation of such techniques
is not included in this paper, as extensive discussions may be found elsewhere (see, e.g., Helstrom 1967).

The Fourier transform has been applied to the orbital analysis problem in the past, although the difficulties
involved in the numerical computations seem to have yielded only specific realizations of the general form of the
equations. The technique applied to a spectroscopic binary is known as the Wilsing-Russell solution (Russell 1902).
While noting many of the benefits obtained through the use of the transform, Russell developed the solution for
the lowest two harmonics (the minimum number to determine the orbital elements), noted that the computations
were quite extensive, and indicated that the method of Lehmann-Filhés was much easier to compute. The work
of Luyten (1935) again demonstrated that, in the limit of small eccentricities, the transform solution seemed quite
desirable, and that the computations were not prohibitive. The discussion offered in § Ila of this paper is simply
the extension of the Wilsing-Russell solution to all frequencies and to develop an alternative method for deter-
mining the elements from the observed coefficients. The generalization to higher frequencies is quite useful for work
with eccentricities larger than a few tenths. Quite surprisingly, there seems to be no equivalent to the Wilsing-
Russell solution in general usage for visual binaries. Examination of the equations (24a)-(24d) is quite illuminating.
The coefficients are quite nearly Thiele-Innes constants, the difference being the functions of the eccentricity, which
are, in the case of the lowest frequency and lowest order, equal to unity. The Fourier series is an explicit representa-
tion of the systematic trends in observations. Hence these solutions offer no radical departure from familiar orbital
determination methods. :

The essence of the argument for the use of the Fourier transform is the availability of explicit predictions in the
transform domain if Kepler motion is present. In configuration space, there appears to be only the equation for
the observable quantity in terms of the orbital elements, and solution procedures seek a minimum discrepancy
between observations and computed values through iterative improvement. In the transform domain, the Kepler
hypothesis predicts every amplitude in the Fourier transform of the observations. The Fourier transform of the
observations may be computed, and error estimators for each of the amplitudes may be determined by algorithms
which do not presume Kepler motion. The solution procedure begins with computing orbital elements by requiring
equality in as many amplitudes as there are unknown orbital elements. By using the general properties of the
Fourier amplitudes, the choice for this solution can be made to include most of the available signal. All other
amplitudes predicted by this Kepler orbit may be compared with the observational detection (or lack thereof) of
amplitudes at these frequencies in order either to improve the first solution or to demonstrate its improbability.
This comparison is limited only by the observational uncertainty. As the Fourier transform neither gains nor loses
information, the same conclusion must be obtained in either configuration space or the transform domain. The
desirability of the transform domain arises through analytic solution, explicit representation of the nature of the
signal which must be present in the observational data, and error analysis based on model-independent error
estimators.

II. SOLUTIONS

The method of solution in each of the four cases is essentially the same. Each time-dependent quantity is expressed
as a Fourier series in the mean anomaly. The Fourier transform of the observable is expressed by

o) = 20 a, cos (n;) + il b, sin (n)) , )

where M, = (2#/P)(t; — t,), P is the period, #; is the time of the ith observation, and 1, is the observer’s zero of
time. The observer’s mean phase 9 and the mean anomaly M are related by the parameter A through the equation

Mi = Qni - A Py (2)
where M; = (2=/P)(t; — T), T is the time of periastron passage, and A = (2#/P)(T — t,). Therefore,

0) = 3 a,cos (M) + > B, sin (1M, )

where o = a,, o, = a, cos (nA) + b, sin (nA), and B, = b, cos (nA) — a, sin (nA). The determination of the
parameters A fixes the difference between the observer’s clock and the orbital clock, and hence the value of T
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The time-dependent functions of elliptic motion may also be expressed as Fourier series. In particular, much
effort has been spent expressing these functions as series in the mean anomaly, with coefficients that are functions
of the eccentricity. Cayley (1859) tabulated the coefficients for the expansions of various functions of elliptic
motion through terms including the seventh power of the eccentricity. Jaranagen (1965) published tables including
terms to the twentieth power of the eccentricity. Hence, the Fourier transform of the equation relating the observ-
able and the functions of elliptic motion is

z o, cos (nM;) + Z B.. sin (nM;)
n=0 n=1

= f(orbital elements) Z F,(e) cos (nM;) + g(orbital elements) Z G,(e) sin (nM,) . 6]
n=0 n=1

Because of the orthogonality properties of the Fourier series, the above expression is the same as

«, = f(orbital elements)F,(e) , forn=0,1,2,... (5a)
and
B. = g(orbital elements)G,(e), forn=1,2,.... (5b)

These equations are then solved for the orbital elements as a function of the observed a, and b,. The only approxi-
mations in the solution are the power series expansions for the F, and G,.

This method produces an infinite number of equations. Hence, the choice must be made either to solve the
minimum number of equations exactly, or to perform a “least squares” or similar solution on many equations.
The choice made in this work is to solve only the minimum number of equations. In particular, only the lowest-
frequency equations are used, as one of the properties of the elliptic expansions is that each coefficient involves a
power of the eccentricity one higher than the previous one. This implies that the majority of the signal due to
orbital motion is to be found in the lowest-frequency components.

The general scheme for solving the set of equations is as follows. The set of equations may be reduced to a
single expression that is an implicit function of the eccentricity which evaluates to zero. Because of the complexity
of that expression, the choice is made to search numerically for the solution. Values of the eccentricity are tried
until the sign of the residual changes. Once bracketed, the correct value may be found by standard interpolation
algorithms. Because the elements w and A are defined on the interval 0°-360°, some expressions involve a choice
of sign. Solutions for each of the possible choices of sign are attempted. In all cases examined, the incorrect choice
of sign either prohibited solving for the eccentricity or resulted in an imaginary orbital element. .

The choice of notation in this paper follows that of Batten (1973). The various orbital elements are (q, e, i, w,
Q, P, T, V,, K). Furthermore, let v denote the true anomaly, r/a denote the quotient radius, ¥ denote the radial
velocity, p denote the apparent separation, and 6 denote the position angle. The variables F, and G, (and H,,
when necessary) are reserved for the coefficients of the various elliptic expansions. To avoid unnecessary symbols,
the F, and G, are defined in each of the following sections independently of their definitions in the other sections.
Finally, the choice is made to present the various equations in the form in which they are encoded for the computer.

a) The Radial Velocity Solution
In conventional notation, the orbit is characterized by
V =V, + K[cos (u) + e cos (w)], 6)
where u = v + . Trigonometric substitution yields
V =V, + Kcos (w) cos (v) + Ke cos (w) — K sin (w) sin (v) . @)

The sine and cosine of the true anomaly are taken as

cos (v) = Fy + i F,cos (nM), (8a)

sin (v) = i G, sin (nM) . (8b)
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The Fourier transform of the radial velocity data is taken to be

V=a,+ z a, cos (nd) + Z b, sin (n20)
n=1 n=1

=ao +  [a,cos (nd) + b, sin (nA)] cos (nM) + > [b, cos (nA) — a, sin (nA)] sin (M) . ©9)
n=1 n=1
A simplification involves noting that
exactly. Hence the equations are
Vo =4y, (lla)
F,K cos (w) = a, cos (nA) + b, sin (n4), (11b)
G,.K sin (w) = a, sin (nA) — b, cos (nA). (11c)

The five unknowns in the solution are e, A, V,, w, and K.
The equations involved in the solution are those for n = 0, 1, and 2. The following results are valid for the general
case m = 2n. The expressions for K and w are rewritten as

a?+ b2

2
K== F,2cos? (w) + G,2sin? (w) (12)
Fu| (Rs® — Ry\ 12

where R; = F,[F,, R; = G,/G,, and R,, = (a,? + b,?)/(a,? + b,?). The elimination of all variables except the
eccentricity yields

0 = tan (¢m - 2¢n)[2Rmn(RF - RG) - RF(RF - RG)2] * (R—__RTG_2

where tan (¢,) = bn/a, and tan (¢,) = b,/a,. The solution for A is

Re? = Ryn) 12
r ) [2Ru(Rs — Ry) — Ro(Ro — Re)?], (14)

tan (nA — ¢,) = % tan (w) . @15)

The numerical solution of equation (14) should proceed normally. In practice, however, the term

RF2 - Rmn
Rmn - R62

is greater than zero over such a tiny range of eccentricity that it is much easier to search for the zero crossings
of the numerator and denominator, and then to evaluate equation (14) over the range of eccentricities remaining.
This curiosity is understood when the expressions for R, and R; are examined. Long division yields

Rexe(l — 55e* +--+), Re = e(l — ge* +---).

These equations explicitly demonstrate the small ““signal” associated with the element  in the solution. The
incorrect choice of sign in equation (14) prohibits solution.

b) The ““ Visual Binary” Orbit
The traditional equations to be solved are

p=rcos(v + w)sec(d — Q), (16)
tan (0 — Q) = tan (v + w) cos (i) . ¥))
A more convenient choice is the use of
pcos (0 — Q) = % [acos (v + w)], (18)
psin(0 — Q) = g[a sin (v + w) cos (/)] . (19)
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The solution outlined by equations (13) and (14) of Monet (1977), while not incorrect, is less efficient that the one
presented here. Expanding the trigonometric functions and reordering the equations yield

psin (6) = [:—1 cos (v)] [a cos (w) sin () + a cos (i) sin (w) cos (Q)]
+ [2 sin (v)] [—a sin (w) sin (Q) + a cos (i) cos (w) cos (Q)], (20)

pcos(f) = [:_z cos (v)] [a cos (w) cos (Q) — a cos (P) sin (w) sin (Q)]

+ [2 sin (v)] [—a sin (w) cos () — a cos (i) cos (w) sin (Q)] . 21
The Fourier transforms of (r/a) cos (v) and (r/a) sin (w) are expressed as
r o
(‘—1) cos(v) = F, + n§=:1 F, cos (nM) , (22a)
r\ . < .
(Z) sin (v) = Zl G, sin (nM) . (22b)
Fourier transforms of the observations are taken as
pcos(6) = a, + Z a, cos (ndn) + Z b, sin (nM) , (23a)
n=1 n=1
psin(6) = co + > c,cos (n®) + > d, sin (n). (23b)
n=1 n=1
The resulting equations are
a, cos (nl) + b, sin (nA) = aF,[cos (w) cos (Q) — cos (i) sin (w) sin (Q)], forn=20,1,2,..., (24a)
—a, sin (nA) + b, cos (nA) = aG,[—sin (w) cos (Q) — cos (i) cos (w) sin ()], forn=1,2,..., (24b)
¢, cos (nA) + d, sin (nA) = aF,[cos (w) sin (Q) + cos (¥) sin (w) cos (Q)], forn=20,1,2,..., (24¢)
— ¢, sin (nA) + d, cos (nA) = aG,[—sin (w) sin (Q) + cos (i) cos (w) cos ()], forn=1,2,.... (24d)

The six unknowns are q, e, i, w, Q, and A.
The equations used in the solution are those for n = 0 and n = 1. The following is true for the equations for
n = 0 combined with those for arbitrary n. Substitution yields

— S0 — doln

tan (nA) = 2. — cob. (25)
F_n = 4+ an(aodn - Cobn) + bn(coan - aocn) . (26)

Fo  ~aol(ad, — cobn)® + (con — aocn)’]?

It is convenient to define

o = a, cos (nA) + b, sin (nAd), (27a)
B = —a,sin (nA) + b, cos (nd), (27b)
y = ¢, cos (nA) + d, sin (nA), (27¢)
8 = —¢, sin (nA) + d, cos (nA). (27d)
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The expressions for the other elements of the orbit are

an (o) = ;fﬂ[g@ig:ﬁ: f;;_(ﬁg)(oza fﬁ?zl)] , (28)
03 =~ e s e e @
tan (@) = 5 e o (:f)y?;nsiﬁ ?wn)]( 2l D’ >
oo LA >

Equation (26) is to be searched as a function of the eccentricity. The ambiguity of sign originates with the choice
of quadrant for nA in equation (25). The incorrect choice of sign prohibits an acceptable solution for the value
of the eccentricity.

¢) The “Angles Alone” Orbit

The “angles alone” solution is based on the equation
tan (0 — Q) = tan (v + w) cos (i) . (32)
A more useful form of that equation is
T, + 79€08 (2v) + 75sin (2v) = 7, cos (26) + 75 cos (2v) cos (26) + 74 sin (2v) cos (26), (33)

where
7, = cos 2Q)[1 — cos? (i)],

19 = —2sin (2w) sin (2Q) cos (i) + cos (2w) cos 2Q)[1 + cos? (i)],
T3 = —2 cos (2w) sin (2Q) cos (i) — sin (2w) cos 2Q)[1 + cos? (i)],
7y = 1 + cos? (i),

75 = c0s (2w)[1 — cos? (i)],

16 = —sin Qw)[1 — cos? (i)] .

The functions of the true anomaly are taken to be

cos (2v) = > F,cos (nM), (34a)
n=0
sin () = > G, sin (nM) . (34b)
n=1
The data are represented by
cos (26) = Z a, cos (n9n) + Z b, sin (), (35a)
n=0 n=1
or
cos (20) = > a,cos(nM) + > B,sin (nM), (35b)
n=0 n=1
where

«, = a, cos (nA) + b, sin (nA), B. = b, cos (nA) — a, sin (nA) .
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The product of two Fourier series is expressed as another Fourier series. In particular, let

cos (26) cos (2») = > > ay cos (mM)F, cos (nM) + > > Busin (mM)F, cos (nM)
m=0n=0 m=1n=0
= > sycos(nM) + 3 &,sin(nM), (36a)
n=0 n=1
cos (26) sin (2v) = o, cos (mM)G, sin (nM) + Z B sin (mM)G,, sin (nM)
m=0n=1 m=1n=1
= > %.cos (M) + > D, sin (nM). (36b)
n=0 n=1

Equations (36a) and (36b) serve implicitly to define 24, 4,, €,, and 2,. By equating the terms in each of the Fourier
series, the following equations are produced:

1 + 79F = ogry + K15 + o6, (372)
7o F, = ay1y + s + Curs forn=12,..., (37b)
173G, = Butys + Byms + Dp1e, forn=1,2,.... 37¢c)

The five unknowns are e, i, w, Q, and A.

The set of equations (37a)-(37c) may be solved in the following manner. The eccentricity and A are involved in
a rather complicated manner in the infinite series o, %,, ,, and 2,. Rather than attempt to decouple them, the
solution proceeds by assuming values for e and A. Hence those sums may be evaluated over the finite frequency
range of the measured a, and b,. For any two distinct nonzero frequencies i and j (usually 1 and 2),

(ms/7s) = A|C, (38a)
(7e/74) = BIC, (38b)
(ra/7) = [ + H(75/75) + Cir6/)]/F:, (380)
(13/74) = [Bi + Bi(75/74) + Di(76/70)]/Gi (38d)
(71/78) = g + A(7s5/78) + Co(76/7s) — Fo(7a7s) (38¢)

where
A= (F%; — Fﬂfi)(Giﬁj - Gfﬁt) — (F; — F'!ai)(Gigy - Gj@t) s

B = (Fe; — Fjai)(Gigj - Gr%) - (F}ij - F,J%)(Ggﬁ, - GB),
C = (F) — F;4)(G2; — G;2) — (F%, — F%)G%, — G,B).
The variables (i, w, Q) may then be calculated by means of

1 = [(s/7a)* + (re/74)*]2

OO = 5 ol + ol P %
tan (20) = —g:;:g , (39b)
c0s (2Q) = (ry/rg) L0 @) (39)

1— cos?(i)

The above equations are functions of (r,/7,), (v5/7,), and (r¢/7,). Hence the equations for (o/,) and (r3/7,) then
define the correct choice for e and A. A particularly useful form for those equations is

e1(e, 8) = (m1/7s) — (2/7a)(75[7s) — (73/74)(76/74) (402)
and ’

esle, &) = 4 S L e 4 (rafr = (ol = rafrad(rafre) = (rafrd(asfOF. (400)

In this form, the correct choice of (e, A) occurs when ¢; = ¢, = 0.
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The preceding two-parameter search appears to be satisfactory. Most of the (e, A) space is uninteresting, as the
values for (r/7,), (vs/74), and (7¢/74) require imaginary values for i, w, or Q. In the small remaining region of
the space, the solution is found by mapping the curves ¢; = 0 and ¢; = 0. There are usually two intersections of
these curves. One intersection is easily found, as the curves are *‘almost perpendicular” when they cross. This is the
spurious solution. The interesting intersection is more difficult to find, as the curves lie very close to each other
over a modest portion of the space. This “almost parallel” intersection may be found with suitable algorithms.
With the correct values of e and A, the parameters of the orbit are found using equations (39a) and (39b). A more
useful expression for equation (39c) is

_ (ro/7)(r6/7s) — (73]7a)(7s/74) 1 s
tan Q) = & () (rol7e) T (ral7a)(rel7s) = (a7 F (ral7o)"] “n

where the sign is that chosen for the inclination. Finally, experience indicates that a search at fixed A is cheaper
than a search at fixed eccentricity.

d) The “Separations Alone” Orbit
The equations

p=rcos(v + w)sec(d — Q), (42)
tan (6 — Q) = tan (v + w) cos (i) (43)

are combined to yield
p? = r?[cos? (i) + sin2 (i) cos? (v + w)]. (44)

Further manipulation leads to
p? = (g)zcos (2v)[3a? sin? (i) cos w)] + (-3)2sin (2)[—3a? sin? (i) sin Qw)] + (g)ﬁa2 — 3a®sin? ()].  (45)

The Fourier expansions of the various functions of the ellipse are taken to be

(:-1)2 cos() = > F, cos (nM), (462)
(-’d)z sin@) = 3 G,sin (M), (46b)

8

(2)2 = > Hycos(u). (460)
When expressed in this manner, the infinite sums referred to in Monet (1977) are not needed. The separations and
the times allow for the determination of the Fourier coefficients of
p? = i a, cos (n9) + i b, sin (nM) = i a, cos (nM) + i B.. sin (nM), CY))
where n—o i n=0 w
o, = a, cos (nA) + b, sin (nd), B. = b, cos (nd) — a, sin (nA) .
Equating the coefficients of each of the terms yields
o, = F,[4a? sin? (i) cos Qw)] + H,[a® — 1a? sin2 (i)], (48a)
Br = G,[—3a®sin® (i) sin Qw)] . (48b)

The five unknowns are a, e, i, w, and A.

The solutions use the equations for n = 0, 1, and 2. The following relations are valid for any two distinct nonzero
frequencies n and m. Equations (7a) and (7b) reduce to

Bn/ G, = Bm/ Gm ’ (49)

ay — a2H, _ o, — a’H, _ B
Fycos Qu) — Hy F,cos Qw) — H,  G,sin (2w)

= }a?sin? . (50)
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Further manipulation produces the expressions

& (HnFm - Han)

tan (20) = ¢t (n = e, G1)
22 = 08 Qo)(aoFy — anFo) — (agHy — anHy) | (52
- cos 2w)(HF, — H,F,) )

The solution proceeds with the choice of a value for the eccentricity. Equation (49) relates A to the chosen eccen-
tricity and to the a, and b,. In general, it yields two possible values for A. Equation (51) is then used to find each
of the two possible values of 2w for each of the possible values of A. The correct value of the eccentricity is the
one which allows equation (50) to be satisfied. With the correct values of the eccentricity and 2w, equation (52)
gives the solution for @, and equation (50) then yields the value of the inclination. In practice, three of the four
possible solutions require a or i to be imaginary, and may be discarded.

III. DETAILS OF IMPLEMENTATION

Many authors refer to a divergence in the Russell solution for eccentricities of e > 0.6, and hence limit their
discussions to eccentricities much smaller than that value. It is unfortunate that a divergence which occurs in a
related problem has been associated with a well-defined solution technique. Details of the divergence appear in
Plummer (1918), but a summary of his arguments is relevant to the present discussion. The Fourier transform of a
Kepler orbit does exist, and the coefficients are absolutely convergent for all e < 1. The problem arises in com-
putational methods which reorder the expansion. A divergence is introduced when the Fourier expansion with
coefficients that are power series in the eccentricity is reordered to be a power series with coefficients which are
trigonometric functions. It is therefore necessary to compute the coefficients for each harmonic to some accuracy
rather than to limit the series at some fixed power of the eccentricity for highly eccentric orbits. Recursive program-
ming using the generating functions for the expansion coefficients provides an adequate solution to this problem.
It should be noted that only the simple estimators in the previous sections made use of the form of the power
series representation of the coefficients, and that the general solution procedure of equating coefficients of the
Fourier series is valid for any eccentricity e < 1. An additional concern is the presence of observational uncertainty.
Since the observed coefficients are not known to infinite precision, there is then some practical limit to the accuracy
needed in the computation of the coefficients. The experience of Wolfe, Horak, and Storer (1967) indicated that
plausible first orbits were obtained to e < 0.8 using only the first term in the expansions. Experience gained by
the author indicates that observations rarely support significant detection of even the five lowest harmonics, and
almost never as many as 10. The tabulations by Jaranagen supply coefficients to the twentieth power of the eccen-
tricity, hence even the tenth harmonic can include five terms before the use of the generating functions is needed.
In every case examined by the author, the analytic solution based on the lowest harmonics provided a preliminary
orbit which was near the one obtained by iteration in configuration space, and the lack of precision for the expansion
coefficients was insignificant when compared to the observational uncertainty.

The primary complication in implementation of the theory presented in § II is the difficulty in obtaining the
Fourier coefficients. The difficulty arises through the very nonuniform sampling of typical astronomical data. The
typical data for a visual binary is moderately well behaved, as complete revolutions are rarely missed, and hence
the extensions of the fast Fourier transform (FFT) presented by Meisel (1978) may be considered. In the case of
spectroscopic binaries, especially of short period, complete revolutions may be missed in a single observing run, and
many revolutions may be missed between observing runs. The discussion by Meisel (1979) is relevant to these
situations.

As a result of the rather limited computational facilities readily available to the author, a useful compromise
algorithm was developed, although it is not optimal in the sense of minimum computing time or treatment of the
nonuniformity of the sampling. The majority of systems to be investigated were of eccentricities sensibly smaller
than unity, and a signal-to-noise ratio of the order of 100 or larger was unexpected. The properties of the expansion
coefficients then indicate that only the first few Fourier coefficients will have significant amplitudes with respect
to the noise. In addition, the Fourier components, while not linearly independent due to unequal sampling intervals,
should be only weakly coupled, as the sampling of the observations is not usually locked to orbital phase.

A fitting function of

M M
O(t) = D ancos(mM) + > by sin (mak)
m= m=1
(in the notation of § IT), and ’

X(P, M) = Z wilo, — O@)P?,

where there are N observations o; of weight w; at time ¢, was adopted. The function is band-limited to M fre-
quencies, as it is known that the harmonics above some limit (to be determined) must be dominated by noise, and
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hence a least-squares fit to the known functional dependence of the signal, would provide error estimators without
the need to actually compute the amplitudes of each of the noise harmonics. In addition, the period is in general
known to an approximate value before analysis begins, and hence the sampling of all possible orbital periods
seems unnecessary.

As the Fourier components are expected to be almost linearly independent, initial analysis presumes M to be
small (usually M = 2 is sufficient). This increases both speed of computation and numerical stability. Trial values
of the period are assumed (and the least-squares fit to the amplitudes performed) until x? is minimized. The
assumption here is that the best estimator of the orbital period is that which minimizes the fit to the functional
representation of Kepler motion. Since the uncertainty in the orbital period is usually small compared to the
uncertainties in the coefficients, it is sufficient to take the error in the period from numerical differentiation of x2.
At the best period, an orbit is computed to determine the eccentricity. This orbit serves to indicate whether M
should be increased and the procedure redone.

The fitting procedure is usually successful for small values of M, as most data will not support fits (that is to say
that numerical instabilities appear and prevent meaningful determination of Fourier coefficients) for more than
four or five frequencies. Exceptionally accurate data, such as that available from radial-velocity spectrometers, may
allow for determination of a few more coefficients. The numerical analysis is rapid, as it involves inversion of
square matrices of dimension of the number of frequencies M, and not of order of the number of observations N,
which may be quite large. The error estimators for the observed coefficients are supplied by the covariance matrix,
which should be close to the expected one (diagonal elements all equal to o2, and all other elements zero). This is
numerical verification that the Fourier coefficients are essentially linearly independent, given the data sampling, and
that white noise is a good model for the observational uncertainty.

The first example is HR 6388, a well-observed system of moderate eccentricity (~0.6). Two orbits for this
system were computed from the radial-velocity spectrometer data presented by Griffin and Emerson (1978). The
period was assumed to be that given by Griffin and Emerson, 876.25 days, as it incorporates the older Lick data
in the solution. These orbits are presented in Table 1 along with that given by Griffin and Emerson. The first orbit
is that obtained by fitting only the lowest two harmonics (the Russell solution) to the data. This demonstrates that
a crude approximation in the fitting function yields an orbit which is close to the final one. This is due to the very
small linear interdependence of the Fourier harmonics in well, but not uniformly, sampled data. The large formal
uncertainty estimators are caused by the appearance of a great deal of signal in 2 which is unaccounted for in
the fit. The second orbit is based on a fit to six harmonics. The preliminary solution was iterated in the transform
domain. Fitting more than six frequencies to the data serves no useful purpose, because the sixth harmonic is
only 2.5 times larger than its uncertainty estimator and all higher harmonics will be even more poorly determined.
This solution yields uncertainty estimators which are about 50%, larger than those presented by Griffin and Emerson
(1978). This discrepancy may be understood in the following manner. The value of x2 is used to determine the
uncertainty of an observation of unit weight. A Kepler orbit of eccentricity near 0.6 is only poorly approximated
by its lowest six harmonics. Hence the residuals from the band-limited representation may not be accurate estima-
tors of the true observational uncertainty in cases of large eccentricity. The value of y2 should be computed from
configuration space residuals in order to estimate the uncertainty of an observation of unit weight for highly
eccentric orbits.

Further applications of the equations presented in § II were undertaken, and the following are typical examples
of the orbital analysis produced. A well-observed spectroscopic binary of low eccentricities is HD 45088 (Griffin
and Emerson 1975). The results of the analysis are presented in Table 2 with the elements derived by Griffin and
Emerson. Despite the high accuracy of the observations, the small orbital eccentricity causes only the first three
harmonics to have amplitudes larger than 3 times their formal errors. The orbital period was taken to be that given
by Griffin and Emerson. Analysis according to the previous algorithm yields P = 6.99185 + 0.00007 days. A plot
of the fit to the Fourier transform appears in Figure 1. A well-observed visual binary is ADS 1598 (= B513).
McAlister and DeGioia (1979) have observed this system with a speckle interferometer at KPNO; however, those
data were not included in this analysis. The results are presented in Table 3. It should be noted that the squaring
of the equations involved with the separations-alone and the angles-alone solutions introduces an uncertainty of
180° in w, and hence the agreement of this element is also acceptable. As this was used for demonstration purposes,
all observations were taken to be of unit weight. Subsequent reanalysis of the system using the normal places and
weights of Heintz (1969) yields essentially similar results. Again it should be noticed that only a few orbital harmonics
are significantly larger than their formal errors with this combination of somewhat larger eccentricity but with
larger observational uncertainty. Also of interest is the conclusion that the angular data are of intrinsically better
quality than the separations data, as can be seen by the uncertainty estimators for the elements that the separate
solutions have in common. Heintz’s period was assumed; however, the analysis procedure yielded a value of
P = 60.4 + 0.3 years. Plots of the fits to the Fourier transform for the three orbits appear in Figure 1.

IV. CONCLUSIONS

The purpose of the equations presented in § I and the examples in § III was not simply to demonstrate that
similar solutions are obtainable in both configuration space and the transform domain. The examples chosen were
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Table 1

Orbits for the Spectroscopic Binary HR 6388

Griffin § Emerson
M=2 M=6 (1978)

K [km/sec] 6.20 (1.64) 4.94 (0.16) 4.79 (0.11)
e 0.70 (0.13) 0.616 (0.022) 0.609 (0.014)
w [°] 111 (13) 106 (3) 103.0 (2.6)
T [MJD] 42407 (35) 42393 (4) 42389.4 (2.7)
Vo [km/sec] | -57.49 (0.16) -57.58 (0.09) -57.58 (0.07)
P [day] 876.25 876.25 876.25 (0.38)

() indicates 1 standard deviation.
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Fic. 1.—Sample data and their finite Fourier representations. In each part, the crosses are Fhe obseryations and the solid line
is the finite Fourier transform whose coefficients are presented in Table 2 or Table 3. Part (a) is the radial velocity of HD 45088.
Parts (b)—(e) are p cos (6), p sin (0), cos (26), and p? of B513.
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Table 2

The orbit of the spectroscopic binary HD 45088

Fourier coefficients and their errors
(P=6.991868, to=MJD 40202.663)

V  [km/sec] M=5

ag= -8.41 (0.16)

a = 11.88 (0.24) b, =-54.14 (0.23)
az= 1.91 (0.23) bp= -8.00 (0.26)
a,= 0.00 (0.23) by = -1.22 (0.26)
as= 0.10 (0.25) ba= -0.46 (0.25)
as= -0.22 (0.25) bs= 0.00 (0.25)

Orbital elements and their errors

LElenent (this work) ., (6Griffin and Emerson)
V  [km/sec] -8.41 (0.16) -8,40 (0.15)
e 0.149 (0.005) 0.150 (0.004)
K [kn/sec] 56.54 (0.23) 56.55 (0.21)
w [degrees] 78.6 (1.7) 77.6 (1.4)
T [MJD) 40202.68 (0.03) 40202.663 (0,029)
P [day] 6.991868 (assumed) 6.991868 (0.000065)

systems where observational uncertainty is small and where there is little doubt that the systems are in Kepler
orbits. Rather, the analysis is the cornerstone for more detailed investigations of systems that are more poorly
understood. The question of detecting unseen companions was addressed by Monet (1978). This demonstrated
that the Fourier transform approach yielded analytic solution with uncertainty estimators for all elements, whereas
configuration space techniques must make many, possibly profound, assumptions to arrive at a solution, and error
analysis is a much more poorly defined process. The discussion of the detection of small eccentricities was presented
by Monet (1979a). Here the treatment of the observational noise in the transform domain seems to yield better
estimators for significance of detection. This work confirms the conclusions presented by Luyten (1935). The
question of detection of apsidal motion was discussed by Monet (19795), and a larger sample of data will be

Table 3
Orbits of the visual binary BS513

Fourier coefficients and their errors
(P=60.44, 1t,=1900.0)

pcos(8) [milli-arc-sec] M=5 psin(8) [milli-arc-sec] M=5

ap=-122 ( 7) Co=-329 (13)
a,= 428 (10) | b, =-362 ( 9) c = 424 (19) | 4,= 443 (17)
az= 78 (10) | by= -25 ( 9) ca= 49 (18) | dp= 76 (17)
ag= 19 (10) | by= -3 ( 9) cs= -5 (18) | dy= 20 (17)
as= -2 (9) | be= 12 (10) ce= -3 (16) | de= 14 (19)
ag= -8 ( 8) | bg= 0 (10) cs= -3 (16) | ds= 3 (18)

1000cos(28) [ ] M=6 p2 [milli-(arc-sec)?] M=3
ap= -89 (10) ao= 481 (18)
a,= 204 (15) | b,= 578 (13) a, =-285 (27) | by =-176 (25)
2= 41 (14) b,=-556 (14) az= -16 (27) b= 10 (25)
ag= 223 (14) | by=-401 (13) ag= 12 (26) | by= 10 (25)

ag= 209 (13) | by=-138 (15)
ag= 131 (13) | bg= -7 (15)
ag= 38 (13) | be= 32 (14)

Orbital elements and their errors

Element (p,8) (p alone) (0 alone) (lleintz)

a [arc-sec]| 0.650 (0.018) 0.655 (0.034) 0.653
[ 0.360 (0.015) 0.390 (0.066) 0.344 (0.006) 0.346
i [degrees] 22,0 (5.3) 26.8 (8.2) 20.4 (2.8) 22.8
w [degrees] 355 (14) 161 (25) 175.9 (6.1) 4.5
2 [degrees] 74 (13) 71.2 (5.6) 64.2
T [year]) 1904.6 (0.3) 1904.4 (1.5) 1904.0 (0.3) 1964.78
[1904.34]

P [year) 60.44 (assumed)| 60.44 (assumed)| 60.44 (assumed) 60,44
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examined for such motion by Monet (1980). Here again, the Fourier approach readily yields solutions and uncer-
tainty estimators where classical techniques seem less desirable. Questions concerning detection of orbital motion
in systems showing intrinsically variable stellar velocities are readily discussed in the transform domain, as the
known properties of the transform of Kepler motion should be distinguishable from other sources of variation in
velocity. In similar fashion, changes in velocity due to blending and eclipse effects should be distinguishable from
true orbital motion.

The analysis of highly eccentric systems requires an algorithm different from that given in § III. The large
number of harmonics with significant amplitudes is not well treated by the simple approximations made in that
algorithm, and its use seems limited to systems with eccentricities of about 0.7 or less. The use of algorithms based
on the fast Fourier transform, such as those developed by Meisel, should be considered. Despite the large number
of harmonics included in such a solution, iteration is readily accomplished as there is no need to solve Kepler’s
equation for each of the epochs of observation, as must be done in configuration space algorithms.

It appears that there is no convenient alternative to iterative improvement of solutions with modest to large
eccentricity. Experience indicates that the analytic solution using the lowest harmonics provides a preliminary
solution which appears to be very close to the final one, as expected from signal-to-noise arguments. In this respect,
there are a few distinct advantages of iteration in the transform domain. The iteration yields more information than
simply the decrease of x2. The residuals of the expected and observed Fourier coefficients may be monitored in
addition to the traditional (configuration space) residuals. In addition, noise-filtering algorithms available in the
transform domain are available to include the effects of noise in the criterion for goodness of fit. The effect of
iterative improvement on the orbital elements should be small, as the signal is known to be decreasing in the higher
harmonics, but the noise remains constant (in the limit of white noise). Indeed, any large change in the orbital
elements in the iteration process should cause concern about the validity of the assumption of Kepler motion. The
preferred solution should include both configuration space and transform space iteration in an effort to provide
internal tests of significance, as each minimizes a different quantity, but both should yield essentially the same
solution if the hypothesis of Kepler motion and random noise is valid.

The Fourier transform solutions have many desirable properties. They treat both spectroscopic and visual
binaries with the same formalism, and therefore, it is hoped, with the same systematic errors. This is of prime
concern when combined solutions are attempted. These solutions require no preliminary estimator for the orbital
elements. There is no need for a linearized form of the equations for motion. There is no need for normal places.
The solutions identify the nature of the signal due to Kepler motion, and this signal is readily traced through the
solution procedure to indicate the well- and poorly-defined orbital elements. The Fourier coefficients are well
defined for all eccentricities, and hence no different scheme is needed in the limit of either small or large eccentricity.
Uncertainty estimators are available for all elements of orbital motion based on model-independent determinations
of the uncertainties in the observational data.

Additional advantages arise from the partial solutions available for visual binaries. The solutions in separations
alone and angles alone provide an additional check on the quality of the combined solution. Each of the separate
solutions has no reference to the other coordinate, as they both are solved without a preliminary orbit. The
generalization for solutions in the orthogonal coordinates, X or Y, alone is readily derived from the equations in
§ I1h, and need not be presented here. These solutions were intentionally chosen to refer to the square of the
coordinate, or twice the angle, as many varieties of optical interferometers are subject to an ambiguity of 180° in
angle determinations. These solutions should be immune to such ambiguities. The only uncertainty introduced by
such a choice is an ambiguity of 180° in the longitude of periastron passage. A particularly interesting application
of the angles-alone solution is for visual binaries of essentially the same magnitude, which causes an occasional
ambiguity of 180° in the determined position angle. The angles-alone solution should yield the correct orbital
period as well as the orbital elements with no need to presume which of the data are in error by 180° in position
angle.

Because of the known structure of the amplitudes of the Fourier transform of Kepler motion, the algorithm
presented in the previous section is moderately stable against changes in observational weight. In a configuration
space iteration, the minimum is a strong function of the assigned weights, as the only quantity that is examined is
the weighted sum of the square of the residuals. Hence a disagreement on the weights of the observations may cause
a large difference in derived orbital elements. The solution in the transform domain appears to be more stable
through the fit to the functional representation of Kepler motion. A sine curve cannot readjust its curvature to
come arbitrarily close to a particular high weight observation that is significantly different from the sense of the
rest of the observations. An ellipse which is allowed to change its eccentricity is capable of such changes in curva-
ture. The fitting of the Fourier coefficients is best thought of in terms of the properties of the orthogonality integral
which is used to derive the value of the coefficient,

2 2n 2 N
an =2 f cos (KMOE)AR & 3, > cos (RO

0

Hence the Fourier coefficients represent integrals over all data of functions of fixed curvature and are corre-
spondingly less sensitive to a single observation.
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In the final analysis, it is a matter of convenience as to whether the orbit is computed in configuration or trans-
form domain. The Fourier solutions developed in the preceding sections appear to offer significant advantages over
traditional iteration in configuration space. The conclusions of thorough analysis in either domain must be the
same, owing to the information-preserving properties of the Fourier transform. It is not apparent that current
configuration space algorithms are at, or can be brought to, the level of sophistication offered by transform domain
algorithms. Ideally, both configuration space and transform domain situations should be attempted, as this offers
unparalleled sensitivity to sources of noise or non-Keplerian phenomena in a particular set of observations. The
cost of the additional computations seems small when compared with the cost of telescope time.
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