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The essentials of this paper were contained in a talk8 delivered by the
author before a meeting of the American Astronomical Society at Wellesley
College on September 12, 1940.
Summwry.-The axial rotation of a component of a spectroscopic binary

combines with its tidal distortion and with its darkening (both ordinary
and gravitational) to influence the component's observed radial velocity.
The amount of the contribution to the radial velocity is computed, for all
stellar models. It is found that even when an orbit is really circular the
contribution is usually such as to lead, when not allowed for, to a non-
vanishing spectroscopic eccentricity and to a longitude of periastron of 900.
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Introduction.-In Note IV we studied' certain contributions, of a non-
orbital nature, to the radial velocity of a component of a spectroscopic
binary. We now suppose that the non-orbital part of the observed radial
velocity either has been allowed for or is negligible, and we concern our-
selves with the problem of determining the orbital elements from the orbital
radial velocity. For such determinations the method of least-squares has
advantages, in general, not possessed by any other method and it- has
usually been employed. Luyten, however, has recently pointed out2 that
the usual type of least-squares solution is not well adapted to orbits of very
small eccentricity. Here we describe two forms of least-squares solution
by the use of which one may retain all the advantages peculiar to the
method of least-squares, while avoiding the difficulty mentioned by Luyten.
The fundamental and well-known equation for the radial velocity, V, of a

component of a spectroscopic binary is:
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V= Y+Kecosw+Kcosu (1)

where y is the radial velocity of the binary's center of mass, and e is the
orbital eccentricity. The argument of the latitude, X + v, is denoted by u;
X is the longitude of periastron, measured from the ascending node of the
component under consideration, and v is the true anomaly. The half-range
in velocity, K, is given by

K = pa sin i/(l -e2)l/2 (2)

where ,u is the mean angular motion, i is the inclination and a is the mean
distance of the orbit of the component relative to the binary's center of
mass. The value of V for any date can be computed by equation (1) if one
knows , (or P, the period), K, e, y, co and T (the date of periastron passage);
and it is usual to employ the preceding six quantities as the elements of the
orbit. The problem in practice is to determine them from the observed
values of V. For this purpose many methods have been devised, which
fall into two classes. Some methods, such as Russell's "short" method3
and the Wilsing-Russell method,4 aim at direct solutions, while the method
developed by Schlesinger5 determines, by least-squares, the differential
corrections to a set of preliminary elements obtained by any direct method.
To obtain a defimtive orbit, there is on general grounds but little doubt

that differential correction by least-squares is the best procedure. It con-
sumes but a small fraction of the amount of time that is spent in exposing
and measuring the spectrogram plates, yet it eliminates all personal bias
from the computations, it allows one to weight the observations easily and
correctly and it enables one to find both the set of elements that best
represent the observations and the mean errors of those elements. The
usual form of least-squares solution is Schlesinger's ;5 the elements that are
corrected differentially are -y, K, w, e, T and ,u; and tables have been pub-
lished5'6 to facilitate the derivation of the necessary coefficients.
When e is not small, the usual type of least-squares solution encounters

no difficulties. Luyten, however, has pointed out2 that many computers,
when applying Schlesinger's method to orbits of small eccentricity, have
fixed T or X and have thereby obtained misleadingly small values for the
mean errors of the elements. Luyten thinks that the usual form of least-
squares solution is not really applicable to orbits of very small eccentricity,
and that T is not a suitable element, being nearly indeterminate in nearly
circular orbits. He has replaced T by the date of nodal passage, which
remains determinate even in the limit of vanishing eccentricity, and, aban-
doning the method of least-squares, he has carried out numerous redeter-
minations2 of the elements of spectroscopic binaries, by the Wilsing-Russell
method.
The author thinks that the fixing of T or w has been a mistake of com-
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puters rather than an intrinsic defect in methods of differential correction
by least-squares, but he agrees with Luyten that T is not the most suitable
element for introducing the time, and he proposes instead the general em-
ployment of the date, To, at which the mean longitude X + M is zero, M
being the mean anomaly. One may call To the "epoch of the mean longi-
tude." Like Luyten's date of nodal passage, To remains determinate in
the limit of vanishing e; but To lends itself somewhat more readily than
Luyten's element to the computation of an ephemeris, and to differential
correction by the method of least-squares. The mean longitude at date t
is merely ,u(t - To). The change that is necessary in Schlesinger's least-
squares procedure, to correct To instead of T, is small and will be described.
But when e is very nearly zero, the preliminary orbit is best taken to be
circular; and then the coefficients of the differential correction to e, in the
least-squares solution, become indeterminate. Neither the Schlesinger
procedure nor the modification of it that involves To can be applied to a
perfectly circular preliminary orbit. Therefore another form of least-
squares solution will later be described that is suitable for orbits of such
small eccentricity that the preliminary value of e is zero. The two forms
of least-squares solution are complementary. The first form is suitable for
all orbits except those having very small e's; the second form is suitable for
orbits having very small e's, and for no others. When it can be used, the
second form involves considerably less computation than the first.

The First Form of Least-Squares Solution.-In Schlesinger's5 solution, the
equations of condition have the form

Sv= r+ COS U*K + sinu*ir + asinu-e + #3sinu*r + #3sinu
* (t-T)m (3)

where 5 Vis the observed radial velocity minus the radial velocity computed
from the preliminary elements, and where

a = 0.452 sin v.(2 + ecosv),
B= (1 + ecos v)2/(1 + e)2,
r = 5z + ecosw*K+Kcoswbe - Kesinwbc*,
K = 5K, (4)
XJ= -Kbcof
e = -K5e/[0.452(1-e2),
r = KAu[(l + e)/(1 -e) ll' T,
m = -K[(1 + e)/(1 -e)3] /25.

Values of the quantities a and ,3 are listed in Schlesinger's tables 1 and 3 of
reference 5, while tables of v as a function of M and of e are available in
reference 6.
Now'T = To + (co/js) where To is the date at which the mean longitude is

zero. Hence:

VOL. 27, 1941 177



ASTRONOMY: T. E. STERNE

AT = bTo + - w

and therefore

T = so- [(1 + e)/(l - e)3]/27r + (w/,.)m,

where

r= K(1 + e)/( -e)f3] To (4')

The equations of condition for finding the differential corrections to the
elements y, K, , e, To and 1. are therefore of the form

Sv = r+cos U-K+ sin u l-( I + e r + a sin u-e +
'( -e) I/

,B sin u To+ ,B sin u (t-To)m. (5)

To find the differential corrections to the elements y, K, c, es To and ,u
by least-squares, it is merely necessary to solve the equations of condition
of the form (5) for the quantities r, K,w, 6-i, To and m.
The equations (5) are almost the same as Schlesinger's equations (3), and

the only changes are in the coefficients of ir and m and in the replacing of T
by rO. The coefficient of 7r in (5) is readily evaluated as sin u diminished by
a constant multiple [(1 + e)/(1 - e)3] /' of the coefficient of ro; while the
coefficient of m is the same as in Schlesinger's solution except that his (t -
T) has become (t - To). The tables5' 6 employed in Schlesinger's method
should be used.
As an interesting example of the present least-squares method, the author

has applied it to the primary component of u Herculis. Baker's7 normals
were used, and the adopted preliminary elements were y = -22 km./sec.;
K = 100 km./sec.; w = 830; e = 0.05; To = 1908 July 2d.427. The
period, 2d.0510, is known from a longer series and was not varied. The
definitive elements that were found by the least-squares solution were -y-
-20.9 km./sec.; K = 99.2 : 1.5 km./sec.; X= 850 ° 160; e = 0.056
0.016; To = 1908 July 2d.422 od.005. The errors are mean errors. An
unmodified Schlesinger-type solution yielded T = 1908 July 2dl904
Od.092; the other elements being of course the same for both solutions. It
will be noticed how much more accurately To is determined than T. Bak-
er's solution7 fixed T at 1908 July 2d.80 and yielded y = -21.2 km./sec.;
K = 99.50 =1 0.99 km./sec.; w = 660.15 = Q0°.54; e = 0.053 § 0.010
(probable errors). His probable errors and values agree sufficiently well
with our mean errors and values forK and for e; but his w differs consider-
ably from ours and his value of its probable error is much too small. Luy-
ten, by the Wilsing-Russell method, finds8 the values X = 830 190;
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e = 0.047 - 0.016; T = 1908 July 2d.898 (mean errors); these values and
their mean errors (when given) are substantially the same as ours.
As pointed out' in Note IV, the numerical values of e and of w are proba-

bly influenced by non-orbital effects in the observed radial velocity. We
have not allowed for such effects here because we have wished to compare
our results with those of Baker and Luyten, who applied no corrections;
and because the exact values of the corrections could be reached only by
rather lengthy discussion.

The Second Form of Least-Squares Solution.-If e in the preliminary solu-
tion is allowed to approach zero, equation (5) becomes in the limit

6V = &y + K cos w-be + cos u*6K - 2K sin v*sin u-be +
KAusinuu6To- Ksinu.(t - TO)6A.

Replace u by L, the mean longitude; be by e (the improved value of e, the
preliminary value being zero); and v by L -co. Then

6V = 6'y + cos L.6K + cos 2L*Ke cos co + sin 2L.Ke sin w +
sin L -,.K6To- sin L* (t - To)KBIA. (6)

Equation (6) is the simple form assumed by the equations of condition
when the preliminary orbit is circular with the elements y, K, To and ,u.
In (6), 6V is merely the observed radial velocity minus the radial velocity
computed for the preliminary orbit, and the latter velocity is merely y + K
cos L, where L = (t - To), and is thus very readily computed. A least-
squares solution of the equations of condition of the form (6), with appro-
priate weights, will yield the values of the unknowns (in which K and ,u
have their preliminary values) 6y, 6K, Ke cos w, Ke sin o, ubKTo and K6JA,
along with their mean errors. One thus obtains definitive values and mean
errors for y, K, e cos co, e sin co, To and ju. One may regard these six quanti-
ties as the elements; or one may go further and find e and X separately from
e cos X and e sin w.
Denote e sin X by g and e cos X by h. Denote the mean errors of g and h,

found from the least-squares solution, by a- and by ah. Then if the weight
of the observations is uniformly distributed along the velocity-curve, g and
h will not be correlated in the least-squares solution and the mean error, o-,
of e is given by

¢e2 = (g2crg2 + h2Oh2)/e2 (7)
and the mean error, o,, of w is given by

am2 = (h2g12 + g2crk2)/e4. (8)
If the weight is not uniformly distributed, there may be correlation be-
tween g and h which would render difficult any precise computation of the
mean errors of the separated e and w. A method of separating e and X and
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of obtaining their formally correct mean errors, under any circumstances,
would be to apply a second differential correction by the first method of
this Note. It is believed, however, that the mean errors found by equa-
tions (7) and (8) will be sufficiently close to the truth in most practical
cases to give a good idea of the accuracies of e and of c. It would require a
most extraordinary distribution of the observations to render the computed
oe and a, incorrect as to order of magnitude.

If the preliminary orbit is circular, and if the improved orbit as obtained
by solving equations (6) should turn out to have an e larger than about
0.05, it might be advisable not to regard the improved orbit as definitive,
and to apply still another differential correction by the first method of this
Note. The limit could be raised somewhat, perhaps to 0.10, for observa-
tions not of the highest quality; but it is the special merit of the present
method that it deals satisfactorily with orbits having very small e's, and it
thus remedies the deficiencies of the first method. Whenever e is so large
as to render the present method of doubtful accuracy (because of the cor-
rections' no longer being differentials), the first method is applicable with-
out difficulty and is the logical method to apply-to a preliminary elliptical
orbit.
As an example, the author has applied the second method of this Note to

Baker's7 normals of the primary of u Herculis. The example should be of
interest because the solution by the first method yielded the appreciable
eccentricity of 0.056. The preliminary circular orbit, to which the second
method was applied, had the elements y = -22 km./sec.; K = 101 km./
sec.; To = 1908 July 2d.418. The period, 2d.0510, being known from a
longer series, was not varied. The second method yielded the values z =

-21.3 km./sec.; K = 99.9 1.4 km./sec.; e cos w = -0.003 = 0.014;
e sin w = 0.053 =i 0.014; To = 1908 July 2d.423 od.005. From the
values of e cos w and e sin w one finds e = 0.053 ='= 0.014; c- 930 ° 150.
The errors are mean errors. One sees that these elements and mean errors
are in good agreement with the elements and mean errors that were yielded
by the first method, which started with an elliptical preliminary orbit.

I am grateful to Professor Russell for his discussion, by correspondence,
of the relative merits of some alternative spectroscopic elements.
Summary.-Luyten has pointed out that the usual form of least-squares

solution is unsuitable to orbits of very small eccentricity. Two forms of
solution are presented that enable one to avoid the difficulty described by
Luyten, while retaining the advantages of least-squares. The first form is a
modification of Schlesinger's method, in which the date of periastron pas-
sage, T, is replaced by the date, To, at which the mean longitude is zero.
Schlesinger's tables can be used. The general use of To as an element, in-
stead of T, is recommended. The second form is a least-squares solution
that involves To, e cos w and e sin w as elements. The first form is suitable
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for all orbits except those with very small e's. The second form is particu-
larly suitable for orbits having very small e's, and is unusually simple.
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We consider curves in real projective n-space Rn.
We call a curve differentiable at one of its points s if it possesses there

linear osculating spaces Lp = Lp(s) of all dimensions p(- 1 < p < n).
That is: we define Ln 1 as the empty space. Suppose we already have
defined Lp and postulated its existence. Then we postulate that the linear
(p + 1)-spaces through Lp and a point s' moving on the curve toward s
have a limit space which we call the osculating (p + 1)-space Lp + I.

If Ln._(s) has only a finite number of points in common with the curve,
there exists a one row matrix (ao, al, .. ., a.- 1), the characteristic of the point
s, such that 10 each of the numbers ao, a,, . .., an-1 equals 1 or 2, and 20
every (n - 1)-space containing exactly Lp, lies wholly on one side of a
sufficiently small open partial arc containing s if the sum ao + a, +... + ap
is even; it cuts it if this sum is odd (p = 1, .. ..,n - 1).2

If the point s has the characteristic (ao, a,, . . ., a. ) and if a subspace
contains Lp(s) but not Lp+1(s), we count s as an (ao + a, + . . . + a,)-
fold intersection of the curve with the subspace.

Let the sum of the multiplicities of the intersections of a differentiable
curve with a (n - 1)-space have the maximum m; then we call m the real
order of the curve. Obviously m ) n, and the real order of an algebraic
curve is not greater than its algebraic order.
A curve Kn+l is a differentiable closed curve of real order n + 1 in Rn.

It is a generalization of the algebraic curve of order n + 1 with one real
branch.

All or all but one of the numbers of the characteristic (ao, a,, . .., an, )
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