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ABSTRACT 

I present a study done to determine the characteristics of the LHIRES III spectrograph on the 20 

inch RC Optics telescope at Hard Labor Creek Observatory. I describe the settings of three 

different diffraction gratings, collimation and focus issues, and practical aspects of use. The 

spectrograph was used with a SBIG ST-8XME camera for all studies. Data collection was 

accomplished with the Maxim DL software package and analysis was completed with IRAF. 

Solutions for the dispersion relation with all three diffraction gratings were found. Several 

projects are underway with this instrument. I present time series spectra of α Vir to demonstrate 

the practical applications of the spectrograph. This non-radially pulsating star shows Doppler 

shifts that were recorded in the Si III 4552, 4568, 4574 Å triplet over the course of a night. The 

observed profile variations showed the spectrograph capable of exacting scientific work. 
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1. INTRODUCTION 

When I first arrived at Georgia State University in 2010, the Department of Physics and 

Astronomy had just finished the rough installation of its new 20 inch RC Optical telescope at its 

Hard Labor Creek Observatory (HLCO). HLCO is used for instrument development, 

astronomical observations, public open house nights, and by GSU students in the introductory 

level astronomy courses to fulfill a requirement to visit an observatory. Students visit, view, and 

then write a report on various celestial objects as well as the telescopes used for viewing. In the 

past the observatory was used for research utilizing the Multiple Telescope Telescope (MTT), a 

16 inch Meade telescope, and a 16 inch Boller & Chivens telescope. With the installation of the 

20 inch, the beginning of a new wave of research was promised. Issues of fine alignment and 

troubleshooting with the mounting and software kept the telescope from being used for research 

until recently. 

Once the issues with the 20 inch RC telescope were resolved, the next step was to obtain 

light for use in scientific endeavors. And so on the night of UT 2011 May 5 first light was passed 

through the LHIRES III spectrograph and the first images were recorded which could be used for 

scientific research. It was quite a feat considering that the telescope had been undergoing 

troubleshooting for well over eight months at that point. There was a palpable sense of relief in 

the dome that science could be done with our newest setup. 

Now we needed to determine how much science could be done. An understanding of the 

spectrograph, observing procedure, and the data reduction processes were also needed. Once 

established these would need to be documented to be passed along to the next wave of 

researchers who would use the spectrograph. This is where I entered the fray. After spending 

hours running the telescope and spectrograph and working with the data, I present to the reader 
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my understanding of the instruments. I offer the best procedures to follow to achieve the least 

headache and most productivity.  

Section 2 describes the telescope and the mount along with the spectrograph. Especially 

useful to the observer will be Section 2.2. Section 2.2.1 describes the slit and how to change it, as 

well as its angular size on the sky. Section 2.2.5 is likely the most useful section with 

information about the micrometer relation to wavelength, the dispersion relations, and resolution 

of all gratings. Section 3 has information about data reduction, and a few tricks to use when 

wavelength calibration becomes difficult. Sections 4 and 5 show results from early, currently 

ongoing research, including results on Deneb and α Vir. A user’s guide is presented in Appendix 

A, and it is my hope that this guide will be used to help future researchers through the labyrinth 

of obtaining useful images. Appendix B lists the available neon lines that are used for 

wavelength calibration. 

A plethora of wishes and desires for streamlining the entire setup and increasing productivity 

along with the simple hopes for retrieval of better data will also be presented within the pages of 

text which follow here. It is likely that after reading the entirety of this work, one will still come 

away with questions that will only be answered by personal experience. But then if that were not 

the case, where would the challenge and fun in life be? 
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2. THE EQUIPMENT 

2.1 The Telescope 

The primary research telescope at HLCO is currently the RC Optical 20 inch telescope. The 

optical design is a Ritchey-Chrétien. This design has two reflecting surfaces, as well as no 

refracting element in the path until one reaches the eyepiece or instrument mounted upon the 

back of the telescope. This makes the telescope color insensitive as there is no chromatic 

aberration from refraction, and it also allows for high light throughput. Another aspect of the RC 

design is that the curvatures of the mirrors are both hyperbolic. This feature results in reduced 

coma when compared to other styles of telescopes, specifically the Schmidt-Cassegrain and 

Cassegrain designs. 

The telescope has a focal ratio of f/8.1, with a manufacturer certified optical surface better 

then 1/20
th

 wave rms.
1
 The mirrors are coated with SiO2 and TiO2 layers that lead to a 

reflectivity of 96.9%. On board coolers can be utilized to cool the primary mirror to ambient 

temperature. The telescope structure is a low-expansion carbon fiber truss. The telescope is 

focused with the secondary mirror, and back focus is adjusted by adding or removing threaded 

rings to the eyepiece mount. 

This instrument is set on an Astro-Physics 3600GTO “el Capitan” German equatorial mount. 

The mount is one of the premier mounts manufactured by Astro-Physics for large telescopes that 

are used primarily for imaging.
2
 The telescope is driven by highly accurate motors that have a 

known step size of 0.05 arcsec/step according to the manufacturer claims. The mount has ability 

to track past the meridian, which is especially important, because German equatorial mounts are 

notorious for the requirement that at the meridian they must slew the north-south by axis 180 

                                                           
1
 For more information visit http://www.rcopticalsystems.com/. 

2
 For more information visit  http://www.astro-physics.com/index.htm?products/mounts/3600gto/3600gto. 
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degrees before resuming tracking. The 3600GTO’s ability to ignore this flip while tracking any 

object is useful. However, it is important to note that if one slews to a different object on the 

other side of the meridian then the telescope axis will have to undergo the 180 degree flip about 

the north-south axis. 

The current method for controlling the telescope is an on-site computer which is situated 

within the dome alongside the telescope itself. The mount can be operated by the computer 

programs which come with the telescope or by “The Sky” (Software Bisque) for ease of pointing 

and slewing.
3
 All systems for the mount will eventually be run through on-site computers, 

however, our current situation is such that the integral hand panel and target list for the mount 

are the main source for slewing and pointing. Once the target is acquired there is drift of 

approximately 1 arc second per minute, if no guide camera is operating. 

Controls for focusing and minor pointing corrections are relayed through the on-site 

computers. The Pulse Guide v1.37 program is used with the guide camera provided with the 

spectrograph to do fine guiding manually. There are a few problems with this set up and some 

changes that we would like to make.  

First it takes some time on the part of the user to become accustomed to the directions in the 

guide camera, and which direction button they correspond to in Pulse Guide, the software box 

for guiding. These directional elements will also change depending upon the position of various 

objects in the sky and the telescope’s position east or west of the polar axis. Our current system 

of mounting the spectrograph to the telescope resulted in a slit orientation about 30º from an 

east-west alignment. A threaded plate fastened to the spectrograph is screwed into eyepiece 

spacers at the rear of the telescope until tight. Because there are six screws which attach this 

                                                           
3
 For more information concerning “The Sky” visit the Software Bisque website at 

http://www.bisque.com/sc/pages/thesky6family.aspx.  
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plate to the spectrograph we have six choices for slit orientation upon the sky, at discreet 60° 

intervals. The ability to set the slit image at a particular angle is useful in the case of atmospheric 

dispersion. By orienting the slit along the great circle from zenith to the horizon the effects from 

this dispersion can be removed. This limitation will hopefully be addressed by an improved 

system of attaching and detaching instruments to the telescope. 

Secondly we would like to find some method of auto guiding to keep objects upon the same 

point of the slit for extended exposures, so that one is not required to check upon the guiding 

continually. A better guide camera and some more advanced software will likely be needed for 

this step. Lastly there is hope for a better system for locating the slit in the guide camera field of 

view. It is easy to locate the slit, either during daylight hours or by turning on lights in the dome 

to illuminate the slit at night. Once the slit can be seen, a sticky note is applied to the computer 

screen along the slit. When it is dark and the slit is difficult to see, the telescope can be moved to 

place the object on the corner of this sticky note to ensure that it is located upon the slit. While 

low tech, this procedure has successfully, if temporarily, solved the issues of finding the slit and 

placing the object upon it for manual fine guiding. This problem will likely be solved with a 

better guide camera and the introduction of guider software. 

Once the final issues relating to to the slewing of the telescope are resolved, the control 

computer will be moved into the electronics room adjacent to the dome. There are numerous 

issues with having the control center set in the same room as our equipment, including the 

introduction of stray light and heat. To combat some of these problems, the computers are run in 

a “night mode” where the desktop and all programs are run in a red color format. There is also a 

small desk lamp with a red bulb to help preserve night vision of the observers and reduce the 
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amount of ambient light in the dome. This has introduced problems for red wavelength 

spectroscopy. Removing the computers from the dome will resolve these worries. 

2.2 The Spectrograph 

The LHIRES III spectrograph is an instrument first envisioned in 2003 as a tool for use by 

amateur astronomers.
4
 LHIRES III stands for Littrow HI REsolution Spectrograph, and it is the 

third and final design, which was completed by its designer, Christian Buil, in 2005. The goal for 

an inexpensive, yet powerful and high resolution spectrograph came about at a conference in 

Oléron, France, where work presented by amateur astronomers showed the many uses of a high 

resolution, cheap spectrograph. The specifications for the LHIRES III were that it have a 

resolving power, λ/Δλ of R≥10,000, and that it be a solid instrument capable of being mounted to 

a 8 inch f/10 telescope. The LHIRES III has met these requirements and is now in production by 

Shelyak Instuments. 

The design is based upon a Littrow type reflecting spectrograph, and with the default 2400 

grooves/mm grating the manufacture’s claim is that a resolving power of  R=17,000 is achieved. 

The manufacturer further claims that with telescope apertures in the range of 8-16 inches the 

limiting magnitude range is between 6 and 8. We discuss below the different diffraction gratings 

and their limiting magnitudes as well as their dispersions and spectral ranges. Many of the 

manufacturer specifications have held true for our own set up, although our limiting magnitude, 

V = 8.5, is set by the current guide camera rather than limits imposed by the spectrograph itself. 

This Littrow spectrograph is made with a lens that serves as the collimator and the camera as 

well. This helps to minimize the size of the spectrograph. Littrow’s are also characterized by 

having the angle of incidence and the angle of diffraction nearly equal. All of this equates to a 

                                                           
4
 See the manufactures web site for more details about the LHIRES III. 

http://www.astrosurf.com/thizy/lhires3/index-en.html.  
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powerful high resolution instrument which can be contained in a small space. To visualize the 

optical path see Figure 2.1. The light enters the spectrograph via the telescope. It is brought to 

focus at the slit. Some of the light is transmitted back to a mirror which sends light to a slit 

viewing camera for guidance purposes. The light passing through the slit hits a 45º principal 

mirror and is sent to the collimator. There is it collimated and proceeds as parallel light rays to 

the grating. It hits the grating and is diffracted, then is returned nearly along the same path. The 

returning light hits the collimator, which now functions as a camera, and the light is finally 

focused at the CCD detector.  

There are several parts to this spectrograph that need to be adjusted by the observer before 

taking any images through the spectrograph. Appendix A is the user guide that will be provided 

to all users of the spectrograph at HLCO. It will give detailed instruction about the practical 

aspects of the adjustments and the order in which they need to be made. Here I will make note of 

the parts, their function, and their adjustment. A picture of our set up can be seen in Figure 2.2.  
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Figure 2.1: The Optical Path of the LHIRES III. This schematic of the interior of the LHIRES III 

shows the basic outlay of all optical components from several angles. The light enters via the 

telescope and is brought to focus at the slit. As it can be seen the doublet serves as a collimator 

and a camera. Image found at manufacturer’s website, 

http://www.astrosurf.com/thizy/lhires3/index-en.html. 
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Figure 2.2: A view of the HLCO 20 inch telescope and spectrograph. 
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2.2.1 The Slit 

There are currently two sets of slits which can be used with the spectrograph. One set is a series 

of four slits with settings of 15 μm, 19 μm, 23 μm, and 35 μm in width. The second set has the 

four settings of 19 μm, 50 μm, 75 μm, and 100 μm. The 19 μm slit in the second set has a “hole” 

in the center of the slit, effectively making a double slit. This might prove to have useful 

applications, but as of yet no work has been done with the second slit configuration. 

These slits are all located within a framework which allows the slit plate to be rotated. The 

slit holder can be removed, the face plate disassembled, and the polished mirror turned to give a 

different slit width. It can thus be changed quickly mechanically. Figure 2.3 shows one slit. 

There is a second of these holders that houses the wider slits. It is easy to observe which slit is 

the one in the light path by simply turning the slit holder around and checking to see which of the 

slits is positioned over the hole that allows light through. There are numbers located in the 

corners of the mirror slit plate and these give the slit width in micrometers (μm). The given slit 

lies under the number to which it relates. 

The choice of slit depends on the goals of the program. For example, studies of the spectral 

energy distribution require a good estimate of the total flux from the object, so a larger slit would 

be used. On the other hand, for radial velocity measurements or line profile studies higher 

spectral resolution is needed, so a smaller slit is generally preferred. (The one caveat is that you 

want a resolution no smaller than two pixels, in the case of our CCD, a slit size no less than 18 

μm.) For fainter stars, a compromise must be made between flux (larger slit) and resolution 

(smaller slit). It will be left to the observer to determine the best fit for their intended target. 
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Figure 2.3: The highly polished slit plate. The numbers in the corners of the mirror correspond to 

the slit which is under the label. 
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These slits also are easily interchanged in the spectrograph. The access panel is on the bottom 

of the spectrograph, see Figure 2.4. Two thumbscrews hold it in place. By unscrewing these, the 

slit can be carefully eased free and changed, either by replacing the assembly with the second set, 

or by changing the slit by rotating the slit plate. The 23 μm slit width setting has been used for all 

data collection thus far. 

The next thing to find is the angular size upon the sky that is associated with each slit. This is 

derived from the focal length of the telescope to determine the plate scale, and then the slit size 

can be found. Equation 2.1 is the equation for finding the plate scale, 

                      Equation 2.1 

where P is the plate scale, f is the telescope’s focal length, and Θ is the angle on the sky. For the 

case of small angles        , where Θ is measured in radians, so the above becomes 

      

and one can then solve for the scale. The telescope has a 20 inch or 0.508 meter aperture. The 

focal ratio is f/8.1. This gives a focal length of 4.115 meters, or 4.115 x 10
6
 μm. Setting Θ=1 

arcsec=1/206265 radians, one finds the result of 19.95 μm/arcsec. Inverting this gives the 

number that we are interested in, 0.050 arcsec/μm. Multiplying this number by the slit size in 

micrometers gives the angular width and these are listed in Table 2.1. 

Table 2.1: Angular Size of Slit upon the Sky. 

Slit size (μm) Angular size on sky (arcseconds) 

  

15 0.75 

19 0.95 

23 1.15 

35 1.75 

50 2.50 

75 3.75 

100 5.00 
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2.2.2 Guide Camera 

The guide camera currently in use is a WATEC IZON webcam, which was included in our 

purchase of the spectrograph, its field of view is about 10 arc minutes. It is run with a free, open 

source downloadable software program called VLC.
5
 This program allows us to stream the 

image from the guide camera and watch the star on the slit as we observe. Keeping the star on 

the slit is done manually with the computerized telescope controls (see Section 2.1 and Appendix 

A). As can be seen in Figure 2.1, the guide camera does not look directly at the slit but rather a 

mirror which reflects light back to the camera from the slit. There were some early minor 

changes  needed so that the slit was centered in the middle of the mirror, however once set the 

mirror should need no further adjustment baring a disassembly of the spectrograph. Proper 

mounting procedure and guide camera startup can be found in Appendix A.2.3. 

 One modification to our camera is that there is a refresh rate and gain control paddle. 

This control box allows one to play with the guide camera signal to noise ratio to obtain dim 

objects, and keep bright objects to a manageable size on the guide camera CCD. There is a 

practical limit to how long one can allow the camera to accumulate counts before the star will 

drift from the slit. Anything longer then a ten second refresh rate is pushing this boundary. Both 

the gain and refresh rate will need to be adjusted depending upon the target being viewed. 

Dimmer object might be possible with new software that would subtract dark frames 

automatically.  

                                                           
5
 Available from http://www.VideoLAN.org. 
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Figure 2.4: The Slit Access panel on the Spectrograph. 
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In our observing experience the guide camera is the limiting factor for the brightness of star 

which can be observed. Stars fainter than 6
th

 magnitude become difficult to follow, and beyond 

8
th

 magnitude it is nearly impossible even with the gain and refresh rates pushed to the maximum 

limits. One of the hopes for our current spectrograph is to obtain spectra of galaxies and other 

faint objects. In order to do this, we will need to obtain both a better guide camera and some 

more advanced software to run our guide camera. 

2.2.3 The Neon Comparison lamp 

The spectrograph comes with a built in neon comparison lamp for wavelength calibration. A 

simple twist of a knob will place the comparison lamp in the optical path of the spectrograph. 

While a helpful tool for wavelength calibrations in the 5000 Å to 7000 Å range, the lack of 

intense blue lines make neon difficult to use for short wavelength observations. Another problem 

with the neon lamp is that there is a sufficiently large separation between lines that in some cases 

only two or three lines are recorded when using the 2400 g/mm grating. This can make one’s 

wavelength calibration difficult. The tables of grating tilt and wavelength in Section 2.2.5 should 

be of some help here. One solution may be to use the Thorium-Argon (Th-Ar) comparison lamp 

that was used with the MTT spectrograph in the past. It has many more lines at the shorter 

wavelengths. Appendix A has more information concerning the use of the neon lamp while 

observing. As a general rule a comp lamp image should be taken anytime settings on the 

spectrograph are changed, and as often as the observer would like for calibration purposes of 

their target. 

2.2.4 The Main Mirror and Collimator Focus 

The positions of the main mirror and collimator are very important in obtaining the proper focus 

for the spectrograph. If these two components are not properly set then the data will suffer from a 



16 
 

variety of problems that can serve to make it unusable. The main mirror adjustment is simple. A 

screw is attached to the mirror bracket; one simply loosens the screw enough to allow it to slide 

up a slot. Figure 2.5 shows the position of this screw. It should be adjusted such that the image of 

the slit runs across the midpoint of the vertical axis of the CCD camera used for imaging. If this 

is not done and the angle of the mirror is too small, then there will be vignetting of the spectrum. 

If the angle is too large then the doublet lens may produce chromatic aberration. 

The most important element of focusing is to set the collimator correctly. The collimator can 

be accessed by either of two access panels on the spectrograph. See Figure 2.6 for an image of 

one access panel. The large thumbscrew in the corner must be unscrewed and then the cover is 

slid back slightly and then pulled off the spectrograph. Removing this cover will expose the 

collimator, see Figure 2.7. To adjust this one simply uses a finger to twist the device, see Figure 

2.8. A nylon set screw is present and that must be loosened to allow for motion. There is one on 

each side. It is not necessary to tighten these until the final focus is decided, as the collimator 

will not move readily. The focus will be complete once the neon comparison lamp lines are as 

fine and sharp as they can be made. Their full width half maximum (FWHM) should be 

somewhere around 3 to 4 pixels under the best circumstances according to the manufacturers for 

the 23 μm slit. 
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Figure 2.5: The Main Mirror Adjustment Screw. This screw is in its own slot, and does not need 

to be loosened much, only enough to slide. The proper position of this mirror is determined by 

the position of the projected slit upon the CCD camera 
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Figure 2.6: The Collimation Access Panel. Only the large thumbscrew in the upper left corner 

needs to be unscrewed, both of the others are fixed. There is an identical panel on the other side 

of the spectrograph. 
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Figure 2.7: The Collimator. The nylon set screw can be seen as the white object in the right of 

the image.

 
Figure 2.8: Adjusting the Collimator. The focus is adjusted by rotating the collimator with your 

finger. It will be properly adjusted when the neon comparison lines are as narrow as they can be 

made. When making comparison lamp images, the cover will need to be replaced to prevent 

stray light from ruining the image. 
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2.2.5 The Gratings 

There are three gratings that we ordered with our spectrograph: 2400 grooves (g)/millimeter 

(mm), 600 g/mm, and 150 g/mm. It was anticipated that these three gratings would give us a 

large range of resolutions, as well as wavelength ranges, to work within. The 600 g/mm and the 

150 g/mm gratings are labeled, but the 2400 g/mm is unlabeled.  

The 150 g/mm and 600 g/mm are ruled gratings blazed at 5000 Å, while the 2400 g/mm 

grating is a holographic grating optimized for the visible range. See Table 2.2 for details. The 

three graphs, Figures 2.9, 2.10, and 2.11 below show their efficiencies for polarized light as a 

function of wavelength. The most important curve is the average. The lines marked S and P are 

where the electric field vectors are perpendicular and parallel to the grating facets. 

Table 2.2: The Gratings and their Respective Blaze Angles. 

Grating Blaze angle 

150 g/mm 2º 8’ 

600 g/mm 8º 37’ 

2400 g/mm Holographic grating optimized in the visible 

range 

 

To remove a grating from the spectrograph, unscrew the four thumbscrews in the corners, 

holding the grating to the spectrograph, see Figure 2.12. Also unscrew the micrometer to at least 

the 21 mm marking, to relieve the tension on the grating and to remove the arm from the path of 

travel. After a new grating is inserted, the four thumbscrews must be replaced. 
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Figure 2.9: The blaze efficiency for the 150 g/mm grating. The line marked as S is perpendicular 

polarization, while the line marked P is for parallel polarization. The important line to look at is 

the average. Optimal efficiency occurs around 5200 Å. Image provided by Olivier Thizy (Shelyak 

Insruments). 
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Figure 2.10: The blaze efficiency for the 600 g/mm grating. The line marked as S is for 

perpendicular polarization, while the line marked P is for parallel polarization. The important 

line to look at is the average. Optimal efficiency occurs around 4900 Å. Image provided by 

Olivier Thizy (Shelyak Instruments). 
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Figure 2.11: The efficiency for the 2400 g/mm grating. The line marked as S is for perpendicular 

polarization, while the line marked P is for parallel polarization. The important line to look at is 

the average. The best optimal efficiency is between 3000 Å and 7000Å. Image provided by 

Olivier Thizy (Shelyak Instruments). 
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Figure 2.12: An image of the grating mount. The four thumbscrews are seen as the black knobs 

in the four corners. These need to be unscrewed and the micrometer needs to be dialed out past 

the 21 mm mark before removal is attempted. 
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Note that while the 2400 g/mm grating will barely fit the entire visible spectrum within the 

range of motion for the micrometer, the 150 g/mm will display secondary, tertiary, and higher 

order spectra within the range of motion. Even the 600 g/mm can display some of the second 

order spectra. The observer must be careful to be certain that the first order is being viewed at 

any particular time, the following tables will assist with this determination.  

The grating tilt is set by a micrometer screw that pushes against a cylindrical bar that is set 

behind the grating in each grating mount, see Figure 2.13. Moving the micrometer screw 

outwards (to larger positional values on the micrometer) tilts the grating to a larger angle with 

respect to the light path from the collimator. This means a smaller the number on the micrometer 

shifts of the spectrum towards the blue.  With the quasi-Littrow configuration of the 

spectrograph, the angle α of incoming beam to the grating normal equals the angle β of the 

outgoing beam to the grating normal.  According to the grating equation (cf. Gray 2005), the 

central wavelength λ of the spectrum image at the detector is λ = (2 d sin(β))/n where d equals 

the grating facet spacing (= 10
7
 Å/mm divided by the number of g/mm) and n is the order of the 

spectrum (one at present). 

We can determine the relation between the micrometer setting s and the grating angle β by 

examining the grating swivel geometry in Figure 2.13. The angle, β of the grating face to the 

optical axis equals the sum of two angles: γ = angle through the grating swivel point from the 

normal to the back of the grating to the center of the support cylinder, and δ = angle through the 

swivel point from the center of the support cylinder to the optical axis. Based upon Figure 2.13, 

γ= 20º, and in what follows, let c1 = sinγ. The second angle, δ will be set by the micrometer 

screw length.   Let s’ equal the distance from the optical axis to the center of support cylinder, so 

that s’ = s + c0, where c0 gives the zero-point offset of the micrometer. Then the angle δ is given 
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by sinδ= s’/c2 where c2 equals the distance from the swivel point to the center of the support 

cylinder (21.2 mm from Figure 2.13).  Then the grating angle is sinβ= sin (γ+ δ) = c1 (1-x
2
)
0.5

 + 

(1-c1
2
)
0.5

 x where x = s’/ c2. 

The remaining unknown is c0, the zero-point offset of the micrometer screw.  I found three 

micrometer settings that placed H-alpha (6563 Å) near the center of the spectrum: s = (20.8, 

10.5, 4.3) mm for the 2400 grating (first order) and the 600 and 150 gratings (second order), 

respectively.  These correspond to sinβ= (0.79, 0.39, 0.10), respectively, based upon the grating 

equation result above.  The relation between micrometer position and sinβ is shown in Figure 

2.14 where these three measurements are plotted as diamonds.  The solid line in the figure shows 

the relation given above for a best fit value of c0 = 9.48 mm. Also shown as plus signs are the 

approximate measurements of micrometer setting and sinβ (for central wavelengths obtained 

with the 2400 grating) from the LHIRES III User Guide.
6
 These are slightly offset from my 

results presumably due to a small difference in the micrometer zero-point value. 

  

                                                           
6
 For more information see 

http://thizy.free.fr/shelyak/LhiresIII/DC0004A%20%20Lhires%20III%20User%20Guide%20-%20English.pdf 
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Figure 2.13: Mechanical Interior of the LHIRES III. Important to note is the micrometer motion 

and the two posts in the grating. The one not in contact with the micrometer is the swivel point. 

The other is the point at which the micrometer pushes the grating. Image found at the 

manufacturer’s website http://www.astrosurf.com/thizy/lhires3/index-en.html. 
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Figure 2.14: Micrometer position vs. sin β. Using the points from our own observations 

(diamonds) a line is fit which shows the non-linearity of the motion. The crosses are points taken 

from the instruction manual for the LHIRES III as a comparison to our fit. The differences are 

likely due to minor construction differences.  
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Figure 2.15 shows the resulting predictions of the micrometer position and central 

wavelength for the three gratings (first order). These relations will need to checked for hysteresis 

in the direction of screw motion. One simple way for observers to check that their tilt setting is 

correct is by observing the solar spectrum from the daytime sky and comparing to a solar atlas 

and/or by making Ne comparison lamp observations. Three tables are given below that list the 

micrometer settings as a function of central wavelength.  These tables also list the spectral 

dispersion and wavelength coverage for use with the ST-8XE CCD camera.  The spectral 

dispersion is given by Gray (2005): d(λ)/d(x) = d cos(β) / (n * fcam) where d equals the grating 

facet spacing, n is the order of the spectrum, and fcam is the focal length of the camera/collimator 

lens (200 mm). This expression results in a dispersion measured in Å/mm, and in the tables 

below I multiply this by 0.009 mm/pixel to give units of Å/pixel. The spectral range is the 

dispersion multiplied by 1530, the number of pixels in the dispersion direction. The final column 

lists the spectral resolving power R = λ/Δ(λ).  For a Littrow configuration where the collimator 

and camera focal lengths are equal, the projected slit width at the detector (FWHM) equals the 

actual slit width.  The spectra presented here were made with the 23 μm slit, so FWHM = 23 / 9 

= 2.56 pixels, and the resolving power was calculated with this assumption. 
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Figure 2.15: Micrometer position vs. Wavelength. This graph gives a general idea of the motion 

of the micrometer versus the wavelength of the first order spectra. It is of note that going to 

micrometer positions beyond these ranges will produce higher order spectra.  
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Table 2.3: 2400 g/mm Grating Data. The approximate micrometer setting which corresponds to a 

given wavelength, and the dispersion, spectral range, and the resolving power of that wavelength 

range. 

λ (Å) Micrometer Settings (mm) Dispersion (Å/pix) Range(Å) R (λ/Δλ) 

4000 12.68 0.164 251 9515 

4100 12.97 0.163 249 9828 

4200 13.26 0.162 247 10148 

4300 13.55 0.161 245 10476 

4400 13.84 0.159 243 10812 

4500 14.14 0.158 241 11158 

4600 14.43 0.156 239 11512 

4700 14.73 0.155 236 11878 

4800 15.03 0.153 234 12254 

4900 15.33 0.152 232 12642 

5000 15.63 0.150 229 13043 

5100 15.94 0.148 226 13458 

5200 16.25 0.147 224 13887 

5300 16.56 0.145 221 14333 

5400 16.87 0.143 218 14796 

5500 17.18 0.141 215 15278 

5600 17.50 0.139 212 15781 

5700 17.82 0.137 209 16306 

5800 18.14 0.135 205 16857 

5900 18.46 0.132 202 17435 

6000 18.79 0.130 199 18043 

6100 19.12 0.128 195 18685 

6200 19.46 0.125 191 19364 

6300 19.79 0.123 187 20086 

6400 20.14 0.120 183 20854 

6500 20.48 0.117 179 21677 

6600 20.83 0.114 175 22560 

6700 21.19 0.111 170 23514 

6800 21.54 0.108 165 24550 

6900 21.91 0.105 160 25680 

7000 22.28 0.102 155 26924 
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Table 2.4: 600 g/mm Grating Data. The approximate micrometer setting which corresponds to a 

given wavelength, and the dispersion, spectral range, and the resolving power of that wavelength 

range. 

λ (Å) Micrometer Settings (mm) Dispersion (Å/pix) Range(Å) R (λ/Δλ) 

4000 4.67 0.745 1139 2102 

4100 4.74 0.744 1138 2155 

4200 4.80 0.744 1138 2208 

4300 4.86 0.744 1137 2262 

4400 4.92 0.743 1137 2315 

4500 4.99 0.743 1136 2369 

4600 5.05 0.743 1136 2423 

4700 5.11 0.743 1136 2476 

4800 5.17 0.742 1135 2530 

4900 5.24 0.742 1135 2584 

5000 5.30 0.742 1134 2638 

5100 5.36 0.741 1133 2692 

5200 5.43 0.741 1133 2746 

5300 5.49 0.740 1132 2800 

5400 5.55 0.740 1132 2855 

5500 5.62 0.740 1131 2909 

5600 5.68 0.739 1131 2963 

5700 5.74 0.739 1130 3018 

5800 5.81 0.739 1129 3072 

5900 5.87 0.738 1129 3127 

6000 5.93 0.738 1128 3182 

6100 6.00 0.737 1128 3237 

6200 6.06 0.737 1127 3292 

6300 6.13 0.736 1126 3347 

6400 6.19 0.736 1126 3402 

6500 6.25 0.736 1125 3457 

6600 6.32 0.735 1124 3513 

6700 6.38 0.735 1124 3568 

6800 6.45 0.734 1123 3624 

6900 6.51 0.734 1122 3679 

7000 6.57 0.733 1121 3735 
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Table 2.5: 150 g/mm Grating Data. The approximate micrometer setting which corresponds to a 

given wavelength, and the dispersion, spectral range, and the resolving power of that wavelength 

range. 

λ (Å) Micrometer Settings (mm) Dispersion (Å/pix) Range(Å) R (λ/Δλ) 

4000 2.83 2.999 4587 521 

4100 2.85 2.999 4587 535 

4200 2.86 2.999 4587 548 

4300 2.88 2.998 4587 561 

4400 2.89 2.998 4587 574 

4500 2.91 2.998 4587 587 

4600 2.92 2.998 4587 600 

4700 2.94 2.998 4587 613 

4800 2.95 2.998 4587 626 

4900 2.97 2.998 4586 639 

5000 2.98 2.998 4586 652 

5100 3.00 2.998 4586 665 

5200 3.01 2.998 4586 678 

5300 3.03 2.998 4586 691 

5400 3.04 2.998 4586 704 

5500 3.06 2.997 4586 718 

5600 3.07 2.997 4585 731 

5700 3.09 2.997 4585 744 

5800 3.10 2.997 4585 757 

5900 3.12 2.997 4585 770 

6000 3.13 2.997 4585 783 

6100 3.15 2.997 4585 796 

6200 3.16 2.997 4585 809 

6300 3.18 2.997 4584 822 

6400 3.19 2.997 4584 835 

6500 3.21 2.996 4584 848 

6600 3.22 2.996 4584 861 

6700 3.24 2.996 4584 875 

6800 3.26 2.996 4584 888 

6900 3.27 2.996 4583 901 

7000 3.29 2.996 4583 914 
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The grating equation above shows that for any given angle β, there may be flux from other 

orders overlapping with the order of interest.  As an example, a first order spectrum centered at 

6000 Å may also record second order flux at 3000 Å, third order at 2000 Å, etc.  In this case, 

there is no practical problem, since Earth's atmosphere effectively blocks all such low 

wavelength, ultraviolet flux from stars. However, above 3200 Å the atmosphere does begin to 

transmit stellar flux, and how much of such second order flux appears in a first order spectrum 

will depend on the wavelength dependent stellar spectral energy distribution, atmospheric 

transmission, glass transmission (through the collimator/camera lens), grating efficiency (see 

earlier figures), and CCD quantum efficiency (see Figure 2.17). Second order flux may become a 

significant problem for first order observations of hot stars in the wavelength range above 8000 

Å. No observations should be attempted at present for orders greater than one since flux 

contamination from higher orders will be severe. For example, a second order spectrum of H-

alpha at 6563 Å will also record first order flux at 1.3 microns (where the CCD is unresponsive) 

and third order flux at 4376 Å, and the overlap of the third order flux will significantly change 

the appearance of the spectrum. See Figure 2.16 for an example of this with the 600 g/mm 

grating.  These problems can be solved by the introduction of order sorting filters into the light 

path, and it will be important to find a way to do this in the near future. 
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Figure 2.16: Example of Order Blending. This spectrum was taken with the 600 g/mm grating. It 

a 240 second exposure near Hα, taken of η Leo on the night of UT 2011 May 7. The y-axis is a 

continuum normalized count. The second absorption feature, to the left of the Hα feature is a 

third order H-γ feature which has been superimposed onto the second order spectral lines.
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2.3 The CCD 

The CCD which we are currently using with the spectrograph is the SBIG ST-8XME. This 

camera was originally used for imaging with the 16 inch Meade telescope, which the 20 inch 

replaced. It had an adaptive optics plate on it which was removed and replaced with a front plate 

from a SBIG ST-7 camera. The ST-7 was no longer in use due to problems with the coolers and 

slow communication with the parallel port connection. The ST-8XME has a resolution of 1530 x 

1020 pixels, and each pixel is 9 μm
2
.
7
 The manufacturer lists the gain as 2.5 electrons and the 

read noise as 15 electrons. A graph of the quantum efficiency can be seen in Figure 2.17. 

Linearity tests were performed, and it was found that the camera loses its linearity after 

approximately 40,000 counts. See Figure 2.18 for our results. It is best to use a 1x1 binning 

scheme unless one is using a wide slit. 

One of the issues with the ST-8 is that it has numerous hot pixels distributed randomly about 

the chip (see Figure 2.19). Not all of the white spots viewed are hot pixels, the large groupings of 

bright pixels are cosmic ray hits. These large spots were never observed to be in the same place 

between images. However the single bright pixels remain over many frames, and are present 

even with dark and bias frames removed. These are the hot pixels. Cooling to a temperature of 

lower than the - 5º C, at which all of our observations were done, would help some with this 

issue, though this will only be an option in the cooler winter months with the ST-8XME. See 

Section 3 for an IRAF command to remove hot pixels from a spectrum. There has also been a 

suggestion of obtaining a new camera dedicated to the spectrograph as the ST-8 might once more 

be repurposed for the next project at HLCO, as an imaging camera for the 16 inch Meade in a 

new building. 

 

                                                           
7
 More information on the ST-8 can be found at http://www.sbig.com/sbwhtmls/ST8XME.htm 
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Figure 2.17: Quantum Efficiency of the ST-8XME. This graph shows optimal efficiency around 

6350 Å at approximately 82%. Image found at SBIG website 

http://www.sbig.com/sbwhtmls/ST8XME.htm  
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Figure 2.18: Linearity of the ST-8. Exposure time is in seconds. The light source used was an 

overhead projector halogen lamp. As can be seen the CCD loses its linear response around 

40,000 counts. 
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Figure 2.19: ST-8 Hot Pixels. This is a dark and bias corrected image of Regulus taken May 7, 

2011 with the 150 g/mm grating for 300 seconds. These are the high order spectral lines, hence 

the low signal to noise of the spectra, which can be seen running somewhat diagonally across the 

image. It shows the number of cosmic ray hits (multi-pixel groupings) and hot pixels (single 

pixels) spread across the image quite well.  
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3. REDUCING THE DATA 

IRAF was used to reduce the data.
8
 Here I outline the basic methods used and how each result 

was obtained. The data were transported from HLCO via data stick and uploaded onto a machine 

with IRAF. These files were stored in a folder labeled with the year, month, and date of the 

observation to facilitate quick identification. Names of the flats, bias, and dark frames all began 

with the name of the respective type of frame. This made it easy to identify these files once 

looking at a list in IRAF. 

Upon opening IRAF, the noao, imred, and ccdred packages are compliled. A header change 

must be done as the fits header reads out the bias files as a bias, and IRAF needs the header to 

read in as a zero. Once the header is changed, the bias frames are combined using the 

zerocombine function. The bias frames are removing differences in the initial pixel sensitivity 

from the image. The combined bias frames are then applied to all images using ccdproc. This 

process is repeated for the darks. The header for the dark frames must be changed so that the 

image is a dark. The darkcombine command is used to stack the darks, and then ccdproc is 

used, noting that a dark correction is being applied. This process is removing hot pixels from the 

image. Lists of the flat frames which correspond to a set of images should be created and then 

these flats are stacked together with the flatcombine command. This is removing the differences 

in pixel sensitivity during the imaging from the image. These combined flats should then be 

applied using ccdproc to only the corresponding image set, making certain that a flat correction 

is being applied and that the proper flats are being used. 

                                                           
8
 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of 

Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science 

Foundation 
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Once all of the images have been corrected for the bias, dark, and flat frames, the spectra 

must be extracted from the image. To do this the kpnoslit package is loaded. Once the package 

is loaded the command apall is used to find the aperture size for the spatial dimension of the 

spectrum. This will need to be done for all the object images, though not for any comparison 

lamp exposures. After the aperture is located and the output spectrum has been extracted and 

saved, the apsum command is used to extract the comparison lamp spectrum and perform a 

wavelength calibration. The identify command is used to identify the lines visible from the 

comparison lamp spectra. For this step a general knowledge of the wavelength range being 

viewed is helpful, and an atlas of the neon lines is needed. 

Once the information is written for the wavelength range, a header change must be done to 

associate a given object spectrum with the comparison reference spectrum. Then the dispcor 

command is entered to establish the wavelength calibration and to apply it to set the dispersion 

relation of the object spectra. To view the spectra splot was used. The continuum command was 

used to normalize the spectra. A known issue with the ST-8XME is a random smattering of hot 

pixels spread out over the chip (see Section 2.2.5). They are nearly impossible to avoid, but they 

can be subtracted out by going to the pixel position in splot and pressing the z key with the 

pointer on each side of the feature, thus replacing the hot pixel with a linear interpolation. This 

was done with a number of spectra. 

Changes to this procedure must be adopted when there are no neon comparison lines in the 

wavelength range of interest, as when observing in the blue end of the spectrum. The wavelength 

calibration can be found instead by observing a well-known, late-type giant star.  This was the 

case for our observations of α Vir in the 4520 Å waveband. In this instance a spectrum was taken 

of a star with a solar type spectrum and known radial velocity. For our observations ε Vir was 
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used. It is a magnitude 2.85 star with a spectral classification of G9 III. This spectrum was 

compared to stellar models and the wavelength solution found was then applied as a wavelength 

calibration of the α Vir spectra. In Figure 3.1, we show an observed spectrum of ε Vir (bottom) 

with a model synthetic spectrum (above) from the grid of Rodriguez-Merino et al. (2005).  The 

model is based on stellar parameters for ε Vir from Takeda et al. (2008). The model makes a 

good match of the observed spectrum and can be used to calibrate the wavelength scale.  

Calibration was done by cross-correlating the spectrum in 30 wavelength bins where an 

approximate linear wavelength calibration was used to map the model into pixel space.  This 

provided a relation between mean pixel number and mean wavelength for 30 bins, and then a 

parabolic fit was made for wavelength as a function of pixel number. Figure 3.2 shows the 

differences in wavelength between the linear model and observed position along with the 

quadratic fit of the trend.  Unfortunately, this provides only an approximate wavelength 

calibration for target spectra because the spectrograph suffers some flexure in moving between 

the target and calibrator. It may be useful in the future to use the department’s Th-Ar lamp from 

the MTT spectrograph calibration unit in such cases.  The Th-Ar source has many more lines that 

can be used directly to obtain the wavelength calibration, this lamp is currently being 

reprocessed for this purpose. 

Another important consideration is that the observer must change from an earth based 

velocity to a heliocentric velocity. This can be done in IRAF via the following procedure. First 

run all spectra through rvcorrect to get VHELIO keyword in header. This requires one to load 

the following packages noao, astutil, and use the task rvcorrect. Using the observatory 

command the information for the observatory was filled in including Latitude, Longitude, 

altitude, and time zones. For HLCO these correspond to longitude = 83.593º, latitude = 33.6597º, 
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altitude = 210 meters, and time zone = 5. Using the hedit update the header with the object 

name, RA, DEC, and epoch data, if not already done at the telescope. Then use asthedit with file 

cmd: st = mst (@'date-obs', obsdb ("obspars", "longitude")) to add the Sidereal time to header. 

Run setjd, then run setairmass. Check keywpars for name correspondence. Finally run 

rvcorrect. 
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Figure 3.1: Wavelength Calibration. The observed spectrum of ε Vir (bottom) is compared here 

to a model synthetic spectrum (above) from the grid of Rodriguez-Merino et al. (2005).  The 

model is based on stellar parameters for ε Vir from Takeda et al. (2008). With a good 

comparison, a wavelength calibration is made possible. 
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Figure 3.2: Calibration Variation.  Here the differences in wavelength between the linear model 

and observed pixel position are shown. The line is the quadratic fit of the trend.  
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4. RESULTS 

Once all the data had been reduced and wavelength calibrated, then science analysis may begin. 

Since targets with strong Hα (6563 Å) lines were picked initially, we made sure to include that 

feature in the wavelength range. This was also important because much of the early work with 

the spectrograph involves observations of hot “Be” stars. The primary feature of interest in these 

stars is the Hα emission line, and so characterization of the spectrograph in and around the Hα 

feature will give other researchers a head start on their own data. 

All of the data concerning the grating tilts appears in Tables 2.3, 2.4, and 2.5. These give the 

dispersion range and resolving power for each grating. Also included are the data for how a 

change in the micrometer setting relates to a wavelength shift. Again note that range of motion is 

not a linear progression across large wavelength changes. The same is true of the spectral range. 

At bluer wavelengths the window of visible wavelengths is larger. At redder wavelengths, it is 

reduced in size. Appendix A is a compilation of notes and handy tricks which have been 

discovered to aid the observer with things learned from experience. Between the tables and 

Appendix A it is likely many of the issues facing the observer have been answered.   

Another set of values of interest are the signal to noise ratio for the gratings of our 

spectrograph. A figure of merit for the 2400 g/mm can be found from our observations of α Vir. 

We had observations running for a length of five minutes for over five hours on the night of UT 

2011 May 19. During these five minute observations of the 0.91 apparent magnitude star in B 

band with the 2400 g/mm grating, we were getting SNR of approximately 600/pixel in the range 

of 4578 Å to 4585 Å, within the continuum. The number of counts in the raw exposures was 

around 3700 ADU with the above parameters. This is in the blue end of the spectrum where the 
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QE of the CCD suffers, and yet it still places the SNR of our observations on par with 

measurements made of α Vir with the MTT (Riddle 2000). 

Calculation of the SNR follows Poisson statistics, such that the SNR goes as the square root 

of the signal. Things which affect the SNR are the magnitude of the object being viewed, 

exposure time, resolving power, and the slit size. Also, to a lesser extent grating efficiency and 

the CCD efficiency. Here we will look at a quick example of transitioning to an 11
th

 mag object 

with 600 g/mm grating. From our α Vir 0.91 mag with the 2400 g/mm grating. Since    

       
  

  
   . That gives that        

  

  
. This mean that the 

 

 
 (

 

 
)
 

 √   
   

√     
  . 

However, the 600 g/mm has a Resolving Power that is approximately 4 times reduced from the 

2400 g/mm, such that 
 

 
    √    . Then assuming that one were to take a 1 hour exposure 

rather than the 5 minute exposure which we took for α Vir; 
  

 
    times longer, so that now 

 

 
    √       . Since one would like a SNR of 10/pixel or more the LHIRES III is likely 

able to obtain spectra with these parameters. However depending upon the wavelength viewed 

and the size of the slit opening there might be more gain then is listed here. Another issue which 

must be addressed is that at lower magnitudes the assumptions which govern the Poisson 

statistics breaks down as the noise from the dark current, sky, and read noise of the CCD become 

more prominent at the longer exposures. 

Two sample spectra are shown. Figure 4.1 is a typical 2400 g/mm spectrum. It is a 90 second 

exposure of δ Sco which is a “Be” star. The double emission in the Hα peak originates in flux 

from the circumstellar disk surrounding the star. The bluer peak is caused by the side of the disk 

which is rotating toward us, while the red peak is from the part of the disk receding.  
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Figure 4.2 is an interesting look at Deneb. Richardson et al. (2011) performed a five year 

high resolution spectroscopic and photometric survey on the prototypical alpha-Cygni variable 

supergiant, Deneb. In their analysis, they observed a "high velocity absorption event" in the fall 

of 2001 (HJD 2452150 -- 2452250) where a secondary absorption component appeared on the 

blue wing of the H-alpha profile, which shows a weak P Cygni type absorption and emission 

component from the modest wind. This secondary absorption disappeared at the end of this 

event, and this outflowing material seemed to then fall back towards the star, resulting in a 

redshifted absorption component. Our commissioning period spectra of Deneb shown in Figure 

4.2, obtained with the 2400 g/mm grating, show a remarkable similarity to the data of 

Richardson et al. (2011). There is a secondary high-velocity (at -130 km/s) absorption 

component seen on UT 2011 May 10 that had vanished by the following observation on UT 2011 

May 24. It would appear that we have caught Deneb in a state similar to that in 2001 when the 

high velocity absorption event occurred. Richardson et al. (2011) compared their results to that 

of other similar temperature supergiants, and found that Deneb is near the lower limit in 

temperature (~8500 K) for which these events can occur. 
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Figure 4.1: Sample Spectrum using the 2400 g/mm Grating. This is a 90 second exposure taken 

at Hα of δ Sco. The strong Hα feature can easily be seen. The y-axis is a continuum normalized 

count. 
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Figure 4.2: Spectra of Deneb. As can be seen in this figure the observations we have made of 

Deneb (middle and lower spectra) have features in the P Cygni profile which resemble a similar 

blue shifted absorption that was observed by Richardson et al. (2011).  



51 
 

5. OBSERVATIONS OF α Vir = HD 116658 

In an effort to show the true potential of the newest research tool at our disposal, I decided to 

observe the star α Vir, known better by its common name of Spica. α Vir is one of the nearest 

massive binary star systems. It is a double-lined spectroscopic binary with an orbital period of 

4.014 days (Riddle 2000). 

Spica was observed on the night of UT 2011 May 19 using the 2400 g/mm grating in the 

4520 Å waveband. Exposures were made for 300 seconds each with a total of 45 spectra for the 

night. No block of observations exceeded one hour before a comparison spectrum was taken of ε 

Vir in an effort to obtain reliable zero point estimate for radial velocity measurements. Data 

reduction was completed as described in Section 3. I made 90 second exposures of ε Vir that 

were used to make an approximate wavelength calibration as discussed previously in Section 3. 

All 45 spectra were then transformed to a standard log λ wavelength grid with an increment 

equivalent to a Doppler shift of 10 km/s.  

The average spectrum is shown in Figure 5.1 (top) together with a model (below) from the 

grid of Lanz & Hubeny (2007). The stellar parameters for this model are taken from the work of 

Harrington et al. (2009). The strongest lines are those of He I 4387 and 4471 Å, and the observed 

and model spectra make a good match for a stellar effective temperature of 26500 K. Note, 

however, that Spica is a double-lined spectroscopic binary and no allowance was made for the 

flux of the fainter companion in making the comparison with the models. The fainter companion 

is predicted to be red-shifted at the time of my observations (Harrington et al. 2009), and the 

companions Si III 4552 line might be present as the weak feature seen immediately to the right 

of the main profile in Figure 5.1. 
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Figure 5.2 shows a close up of the spectral region surrounding the triplet Si III 4552, 4567, 

4574 Å. The observations are shown in the lab frame in this depiction, and they are separated so 

that the continuum is aligned with the time of observation indicated on the y-axis. The breaks in 

the observations are when comparison spectra were taken of ε Vir. Due to the fact that for much 

of the night ε Vir was across the meridian from α Vir, the slewing took some time. There were 

clearly systematic profile variations present at the time of the observations that appear prominent 

in the line cores. Harrington et al. (2009) argue that these variations result from the varying tidal 

pull of the companion that excites surface waves on the primary star. These oscillations create 

small Doppler shifts that add or subtract from the rotationally broadened profiles to create the 

patterns of line variability. The Doppler shift in the profiles’ can be seen in Figure 5.3, and it is 

seen that contrary to what is reported by Harrington et al. (2009) and Riddle (2000), our 

variability is moving from red to blue wavelengths. Table 5.1 has the associated data as well as 

the errors for the radial velocities. The HLCO observations of Spica demonstrate that the 

LHIRES III spectrograph is a very useful instrument to explore such variability in this and other 

stars. 
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Figure 5.1: The average spectrum of α Vir (top) compared to the model (below) taken from the 

grid of Lanz & Hubeny (2007). The stellar parameters for this model are taken from the work of 

Harrington et al. (2009). The strongest lines are those of He I 4387 and 4471 Å. Note that Spica 

is a double-lined spectroscopic binary and no allowance was made for the flux of the fainter 

companion in making the comparison with the models. 
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Figure 5.2: Line profile variability of α Vir. This is a close up of the spectral region surrounding 

the triplet Si III 4552, 4567, 4574 Å. The continuum is aligned with the time of observation on 

the y-axis. Breaks occur when comparison spectra were taken of ε Vir. A substructure in the 

profile can be seen traveling from longer to shorter wavelengths as the night progresses. This is 

reversed from what Riddle (2000) and Harrington et al. (2009) report. 
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Figure 5.3: Radial Velocity of Line Profile Variability. This graph shows the general trend of the 

line profile variability from red to blue. The minimum of the profiles were found and then 

plotted in velocity space as they moved across the profile. Vrmin is the velocity of the minimum 

point in the profile. Notice that the change in the radial velocities equals about 90 km s
-1

.  
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Table 5.1: Radial Velocity of α Vir Line Profiles. The following table contains the time of 

observations, the radial velocity measurement of the variability of the line profile, and the error 

of the measurement. The data corresponds to the points in Figure 5.3. 

HJD- 

2455700 

Vrmin 

(km/s) 

Error 

(km/s) 

0.555 59.9 6.6 

0.561 63.2 4.4 

0.565 36.5 16.9 

0.570 53.2 4.5 

0.574 59.9 8.3 

0.577 56.6 6.3 

0.581 43.2 9.0 

0.584 39.9 12.9 

0.600 36.5 15.1 

0.604 29.8 8.9 

0.608 46.5 8.2 

0.613 36.5 6.3 

0.618 16.5 9.0 

0.622 26.5 6.2 

0.627 16.5 14.0 

0.646 29.8 12.7 

0.649 9.9 6.6 

0.653 26.5 1.9 

0.656 13.2 11.5 

0.660 19.9 5.8 

0.663 9.8 10.4 

0.667 9.9 2.6 

0.670 3.2 15.3 

0.674 23.2 9.7 

0.677 13.2 15.9 

0.681 9.8 10.4 

0.684 13.2 4.5 

0.702 6.5 6.3 

0.706 -0.1 14.3 

0.709 -20.2 9.9 

0.713 -0.2 9.6 

0.717 16.6 31.1 

0.720 -3.5 26.1 

0.723 -23.5 13.9 

0.727 -6.8 10.2 

0.731 -6.8 10.2 

0.734 -16.8 4.4 

0.738 -30.1 9.9 

0.741 -10.2 2.6 
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0.780 -23.5 8.1 

0.784 -20.1 5.8 

0.788 -26.8 11.5 

0.791 -30.2 12.7 

0.795 -23.5 8.1 

0.798 -40.1 11.6 
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6. CONCLUSIONS 

The final take away from all of this is that we are now capable of doing some interesting things 

with the newest instruments at HLCO. While hopes for a quickly interchangeable spectrograph 

might not have yet been realized, it is giving useable data on a regular basis. As was seen from 

the observations of αVir, fairly accurate measurements can be made of the line profiles, even to 

the point of being able to detect a secondary spectrum from only one night of data. The non-

radial pulsations of α Vir can also be seen in the Si III 4552, 4567, and 4574 Å features, showing 

that we have attained a high enough SNR to pick out interesting features. While true that this is a 

bright, well known star, and the equipment is not being pushed, the true value of these 

measurements is not to show the limits, but rather to show some of the capabilities of our new 

spectrograph. In this endeavor the measurements do quite well.  

The other purpose of this study was to give future researchers a good background on the 

operation of the spectrograph, as well as ways to avoid some of the headaches that were 

encountered early on. Only time will tell if this study has been successful in its endeavors.   
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Appendix 

A. Users Guide 

A.1 Telescope Start-Up 

1. Plug in the dome slit control and open the dome slit, adjust the lower slit as needed for 

object. Once finished unplug. (The plug will not rotate with the dome!) 

2. Plug in the computer and telescope power strips and begin to boot the computers. 

3. Turn on power boxes for the telescope and mount. 

4. Remove guide scope eyepiece and objective lens covers. (Important to do this step first so as 

not to risk damage to the primary mirror!) 

5. Remove objective cover of 20 inch. 

Note: When slewing always be aware of the scope orientation. The telescope can, in 

some instances, point lower than horizon, and this is not good for the primary mirror! 

Hitting any button on the paddle will pause the slew. DON’T LET THE TELESCOPE 

POINT DOWN!!! 

6. If the telescope was properly parked the last time it was used (as it should always be) the 

following is the procedure to sync the telescope to a calibration star:  

a. Select the following available option in this sequence: object  -> star -> NEXT, 

PREV. (until you find your star) -> select GOTO, the scope will now slew to the 

selected star. 

b. Center the star in the 20 inch telescope. The adjustments to the slew rate are found by 

pressing the   button on the hand paddle and then changing the speed using the 

PREV. (<) and NEXT. (>) buttons. 

c. Once the star is centered select the NEXT (>) button. 
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d. Hit #1 on the paddle.  

7. The telescope is now synced. 

A.2 Using the Spectrograph 

Notes  

- It is helpful to set up during daylight hours for several reasons. With a good solar spectrum 

atlas you can easily figure out where in the spectra you are looking. It is also handy to get 

your bias and dark frames out of the way early, and to make certain of all focus and 

collimation adjustments. 

- When mounting the spectrograph onto the telescope, be sure you back-screw for a turn or 

two so as not to cross thread the adapter in the camera or the scope. 

- The CCD will need to be aligned such that the spectral dispersion taken runs across the 

screen horizontally. A few minutes might be required to find the proper orientation. 

- The power cord for the comp lamp is placed under unnecessary stress if left plugged in for 

extended periods of time. It is wise to plug and unplug the cord as needed for comp lamp 

exposures. 

- All of the power bricks are marked for their intended use on the brick. 

A.2.1. To Connect the ST-8 to the Computer 

1. Make certain Windows is open on the computer before proceeding. 

2. Connect the Power and one of the USB cables to the CCD. 

3. Once at the computer follow the following sequence:  

a. A Windows wizard pop-up will appear saying that the computer has found hardware; 

chose to not get driver online  
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b. Install from list (don’t search for manual driver, it should show it) 

c. The highlighted selected driver should be fine, hit next 

d. Select finish. (Should an error occur, one should select sbigulder found using the 

following path C:\Program files\SBIG\Driver Checker\SBIG Driver. This will work 

to sync the camera.) 

e. You are now ready to open Maxim DL 

-Note: Before you disconnect the camera, be sure to turn off the cooler! Also every time the 

camera is disconnected it will need to be reconnected as above. 

A.2.2. Maxim DL 

1. Select camera control found in the view menu. (Alternatively use the camera Icon).  

2. Under the camera tab click on select camera and chose Universal SBIG from the list. 

3. Click on the connect button. 

4. To turn cooling fans on from control window: 

a.  Under Camera 1 click on cooler button 

b. Set temperature (can be up to 30º C below the ambient temperature)  

c. Select ok, then turn the coolers on by clicking on the “on” button in the cooler 

section.  

d. Wait at least 15 minutes for the camera to finish cooling before imaging. 

5. To image go to expose tab. 

A.2.3. Guide Camera 

1. Attach the power, S-video, and control paddle cords to the camera. 

2. Slot the camera into the eyepiece holder nearest to the telescope. See Figure A.1. 



63 
 

3. At the computer there is a USB device with audio/visual cables attached to it. This is 

connected to the S-video cable. Insert it into the front of the computer. 

4. The program to run the guide camera is the VCL player. It is labeled guidecamera and is the 

icon with a traffic cone. Simply open this program and the images from the camera should 

appear with the text dshow:// at the bottom. If the image does not appear to be refreshing, 

make certain that the freeze button on the camera hand paddle is not depressed. (If it is 

depressed, then there will be a red light by FRZ.) 

5. The refresh rate for the guide camera is determined by its hand paddle; adjust it as needed for 

the target which is being viewed. The gain and the refresh time might both need to be 

adjusted. Slower refresh times with higher gain are preferable for dimmer targets. 

Note 

- A known problem with the current guide camera is that it can overload. Simply powering the 

guide camera down and restarting it has cleared this issue with no further occurrence in a 

given night. 
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Figure A.1: A View of the Camera Positions. Note that the guide camera is to the right, nearest 

the telescope, and the ST-8 is located in the left position. 

 

A.3. Prior to Observing 

1. Make certain that the following programs are open on the computer:  

a. RCOS TCC- this is the control for the focus of the telescope. While looking at the 

image from the guide camera make the image of the star as small as possible. 

b. Pulse Guide v1.37- this is the control for fine guiding. Based on the image from the 

guide camera, use this control to keep the star centered on the slit. To connect simply 

select “connect.” Once connected go to the guide/slew tab for guiding. 

c. VCL- for the guide camera. 
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d. Maxim DL- for imaging. 

2. Make certain that you have the projector for taking flat field images. It is stored in the 

electronics room under the desk. 

3. Make certain that you have the desired grating and tilt. This is best checked by taking a solar 

spectrum and using a solar atlas to identify features near the waveband you wish to view. 

4. To focus the spectrograph will require you to image the comp lamp. The simplest procedure 

is the following: 

a. Turn on the lamp and place it in the path of the light. See Figure A.2 for the positions 

in and out of the path. 

b. In Maxim DL chose frame type “light” and chose to continuously expose for enough 

time that the lines are bright, but that the CCD is not saturated. 

c. Open the access panel to the collimator and using your finger turn the collimator. 

Note that both nylon screws need to be loosened. See Figures A.3 and A.4. 

d. Check to see that the lines decrease in width. The lines need to be as narrow as 

possible. This will take some time. 

e. Once satisfied, tighten the nylon set screws and replace the cover. One must replace 

the cover before taking a comp as stray light will ruin any spectra taken. 

f. Always make sure to turn off and move the comp lamp out of the optical path once 

finished. 

g. The final thing to finish the set up is to adjust the main mirror. This adjustment 

insures that the image of the slit will be across the center of the CCD. To do this, find 

the screw attached to the main mirror, Figure A.5. Loosen this screw only enough to 
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allow for it to slide up and down in its slot. {DON’T COMPLETELY UNSCREW 

IT!}  

h. Adjust the screw up or down until the image of the slit runs across the center of the 

CCD. Failure to do this can result in a doublet chromatism feature in your data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Neon lamp configuration. A photo of the lamp removed from the optical path (left), 

and placed in the optical path (right). Note the difference in position of the dark line on the knob. 

 

 

 

 

 



68 
 

 

 

 

 

 

 

 

Figure A.3 Collimator access panel. 
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Figure A.4 Collimator adjustment. 
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Figure A.5: The Main Mirror Adjustment Screw. 

Notes: 

-Make certain to leave sufficient time before you anticipate observing to be certain that the 

spectrograph is focused via the collimator. This can be a lengthy process. 

-Any change in the tilt of the grating, or changing the grating itself requires refocusing of the 

collimator.  

-Leave roughly fifteen minutes for fine adjustment of the collimator, for the most precise data 

collection, after adjusting the grating or tilt. 

-The main mirror will only need to be adjusted if the grating is changed. 

A.4. Observing Procedure 

1. To obtain bias frames, select the autosave option in the expose tab and select type bias and 

desired number of bias frames from menu. Make certain of proper naming and save path. Ten 

bias frames are sufficient, and this will only need to be done once per observing run.  

2. To obtain images of spectra and comp lamp spectra: 

a. Select the single exposure option. 

b. Make certain that the type of frame is “light.” 
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c. Set your exposure time in seconds. 

d. Select start to begin imaging. 

e. While imaging, be certain to keep the object located on the slit the entire exposure. 

This requires one to guide by the following manual procedure: 

i. While looking at the VCL guidecam player the object should be located on the 

slit. It is sometime possible to see the slit across the object. More often than 

not it will not be possible. The best thing to do is to affix a Post-It note along 

the slit as a point of reference. This is best done by using the projector, or 

during daylight hours to illuminate the mirror and locate the slit in the guide 

camera field of view. Using a corner of the Post-It as a reference will allow 

you to keep the object in a fixed point during observing. 

ii. Once the slit has been marked the star must be placed upon the slit. Using the 

Pulse Guide v1.37 program use the N, S, E, and W buttons to keep the object 

in the same point. It will take some time on the part of the user to become 

accustomed to the direction in guide camera which corresponds to a direction 

button in Pulse Guide. These will also change some depending upon the 

position of various objects in the sky relative to the telescope placement about 

the pier. 

f. For strong emission features, make certain that the counts for the feature are several 

thousand, compared to the rest of the spectra which should be in the hundreds, and 

over the background which should be in the low hundreds. 
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g. For a comp lamp, make certain that the lamp is on and in the optical path. See Figure 

A.1. These exposures will need to be done immediately before or after any spectra 

taken. 

h. Always make certain to turn off and move the comp lamp out of the optical path once 

done. 

i. When saving these images, you must manually add “.fits” to the end of the name so 

as to get a .fits file. 

j. If you would like to change anything in the fits header of subsequent images: 

i. Go to the File menu of Maxim DL 

ii. Select settings 

iii. Once the settings menu is up select the Fits Header tab 

iv. After making the desired change in any field click the set button. 

v. Once all desired changes have been made exit the setting menu. The changes 

will be applied to any image taken after the change has been made. 

Note:  If one would like a quick look at the cross section of the spectra while in Maxim DL 

follow these steps: 

a. Select the View menu. 

b. Select the Graph Window from the drop down box. 

c. In the pop-up box select either horizontal box, or horizontal line. (For this to 

work the spectra must be nearly horizontal on the CCD, the horizontal box 

option is slightly more forgiving about the orientation.) Do not close the pop-

up menu. 
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d. Go to the image in Maxim DL and click and drag over the area you wish to 

view. If the Horizontal Box option is used the bottom of the box will be 

placed atop the spectra.  

e. A 2-D image of the spectral emission and/or absorption should be visible in 

the pop-up menu. 

f. If the Horizontal Box option is used once the Graph Window is closed, then 

the subframe must be resized. If it is not, then subsequent images will only 

have the area within the box recorded. To resize the image go the expose tab 

in the camera control. The button in the far right of the Subframe box needs to 

be selected. The pixels of the subframe size should return to the size of the 

image. It should be 1530 x 1020, or whatever fraction of that pixel size your 

binning allows.  

3. Flats will need to be taken before any change is made to the grating or the tilt. If no changes 

are made, they can be taken at the end of the night. It is recommended that three flats be 

taken each time flats are required. One minute flats are usually sufficient for moderate 

exposures. This will give counts which average around 2000. To take a flat: 

a. Select the autosave feature. 

b. Choose frame type “flat.” 

c. Choose your exposure time. A one minute exposure should be sufficient. 

d. Select the number of flats you wish to take. 

e. Make certain of proper naming and save path. 

f. Move the dome such that the telescope is pointed at the interior of the dome. 
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g. Using the projector illuminate the interior of the dome where the telescope is pointed. 

Make certain that the entire objective is pointed at an illuminated portion of the wall. 

h. Begin exposing your flat field frames. 

4. Dark frames will be done at the beginning or end of the night but only once per observing 

run. Usually five darks will suffice. To get a dark frame: 

a. Select the autosave feature. 

b. Choose frame type “dark.” 

c. Choose your exposure time. Make certain that your dark frames are at least as long as 

your longest exposure of the night. 

d. Select the number of darks you wish to take. 

e. Make certain of proper naming and save path. 

f. Begin exposing your dark frames. 

A.5 Closing Down 

1. Once all exposures have been completed, begin warming-up the CCD. To do so go to the set-

up tab in Maxim DL select the warm-up option in the cooler controls. 

2. While the CCD is warming up all programs other than Maxim DL can be closed down.  

a. Do not close Maxim DL until the CCD has been properly warmed and disconnected. 

3. Once the other programs are shut down the USB for the guide camera can be removed from 

the computer. 

4. To park the telescope: 

a. Hit the Menu button until the main menu screen appears. 

b. Select set up option from the main menu. 

c. Select park option #3. 
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d. Once the telescope is done slewing the power can be turned off at the two power 

supplies. 

e. When replacing the covers for the telescope optics, care should be taken that the first 

cover replaced is the primary cover so as not to drop anything on it and risk damage. 

5. To close the dome; 

a. The dome slit should point northeast. This should be easy as it is the only place at 

which to lower the slit. 

b. Once the slit has been lowered completely make certain that the slit control is 

unplugged. 

c. Make certain that any windows opened, or fans turned on during the observing run 

have been closed or shut down. 

6. At the telescope make certain that all wires going to the guide camera have been removed. 

This should include the power, the S-video, and the hand paddle cables. 

7. Once the chip has been warmed to ambient temperature it is safe to disconnect the CCD from 

the computer.  

a. Go to the camera control in Maxim DL and select the option to turn off the coolers.  

b. Then disconnect the CCD by selecting the disconnect option. 

c. You can now close Maxim DL and begin to shut down the computers. 

8. Back at the telescope remove the power cable and the USB cable from the CCD. If the 

spectrograph is remaining on the telescope then it can be left as is. 

9. If the spectrograph is to be removed: 

a. Remove the CCD and the guide camera and replace the eyepiece covers. 
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b. When unscrewing the spectrograph be certain that the black rings on the telescope are 

not coming unscrewed. The only thing that should be moving is the aluminum plate 

attached to the spectrograph. BE CAREFUL TO MAINTAIN A GOOD HOLD THE 

ENTIRE TIME WHILE UNSCREWING! The threads are fine and the spectrograph 

will come free quickly. 

c. Replace all eyepiece covers on the spectrograph and return it to the carry case. 

d. Screw the 2 inch eyepiece holder onto the telescope and place an eyepiece cover on it. 

e. Remove all equipment to the electronics room. 

10. Make certain that everything is shut down and then unplug the power strips. 

11. Double check that the dome is closed and unplugged. 

12. Turn off the lights and make certain that the door shuts. 
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B. Atlas of Neon Lines 

Table B.1 is intended to give the user a general idea of the lines in a particular wavelength range 

which are of use for comparison spectra and subsequent wavelength calibration. It is not 

exhaustive, nor will all of the lines be seen. These are just the most likely to aid in identification 

of the neon comparison lamp for wavelength calibration. In the blue there are few to no lines 

visible, and it is suggested that in the future the Th-Ar lamp, which was used with the MTT, be 

utilized for blue wavelength calibrations. 

Table B.1 Known Ne Lines. 

Wavelength (Å) 

5748.2985       

5764.4188       

5804.4496      

5820.1558       

5852.4878       

5881.895       

5944.8342       

5975.534        

6029.9971      

6074.3377      

6096.1631      

6128.4499      

6143.0626      

6163.5939      

6217.2812     

6266.495        

6304.789        

6334.4278      

6382.9917      

6402.246        

6506.5281      

6532.8822      

6598.9529      

6678.2764      

6717.043        

6929.4673      

7024.0504      

7032.4131      
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7173.9381      

7245.1666      

7438.899        

7488.8712      

7535.7739      

8136.4057    
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